Log in

Average local ionization energy: A review

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The average local ionization energy \( \overline {\hbox{I}} \left( {\mathbf{r}} \right) \) is the energy necessary to remove an electron from the point r in the space of a system. Its lowest values reveal the locations of the least tightly-held electrons, and thus the favored sites for reaction with electrophiles or radicals. In this paper, we review the definition of \( \overline {\hbox{I}} \left( {\mathbf{r}} \right) \) and some of its key properties. Apart from its relevance to reactive behavior, \( \overline {\hbox{I}} \left( {\mathbf{r}} \right) \) has an important role in several fundamental areas, including atomic shell structure, electronegativity and local polarizability and hardness. All of these aspects of \( \overline {\hbox{I}} \left( {\mathbf{r}} \right) \) are discussed.

 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sjoberg P, Brinck T, Murray JS, Politzer P (1990) Can J Chem 68:1440–1443

    Article  CAS  Google Scholar 

  2. Murray JS, Politzer P (1996) In: Parkanyi C (ed) Theoretical organic chemistry. Amsterdam, Elsevier

    Google Scholar 

  3. Politzer P, Murray JS (2007) In: Toro-Labbé A (ed) Chemical reactivity. Amsterdam, Elsevier, Ch 8

    Google Scholar 

  4. Nesbet RK (1965) Adv Chem Phys 9:321–363

    Article  Google Scholar 

  5. Koopmans TA (1934) Physica 1:104–113

    Article  Google Scholar 

  6. Politzer P, Abu-Awwad F, Murray JS (1998) Int J Quantum Chem 69:607–613

    Article  CAS  Google Scholar 

  7. Politzer P, Abu-Awwad F (1998) Theoret Chem Acc 99:83–87

    CAS  Google Scholar 

  8. Cramer CJ (2002) Essentials of computational chemistry. Wiley, New York

    Google Scholar 

  9. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  10. Kohn W, Sham LJ (1965) Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  11. Perdew JP, Parr RG, Levy M, Balduz JL Jr (1982) Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  12. Levy M, Perdew JP, Sahni V (1984) Phys Rev A 30:2745–2748

    Article  Google Scholar 

  13. Krieger JB, Li Y, Iafrate GJ (1992) Phys Rev A 45:101–126

    Article  CAS  Google Scholar 

  14. Kleinman L (1997) Phys Rev B 56:12042–12045, 16029–16030

    Article  CAS  Google Scholar 

  15. Perdew JP, Levy M (1997) Phys Rev B 56:16021–16028

    Article  CAS  Google Scholar 

  16. Harbola MK (1999) Phys Rev B 60:4545–4550

    Article  CAS  Google Scholar 

  17. Chong DP, Gritsenko OV, Baerends EJ (2002) J Chem Phys 116:1760–1772

    Article  CAS  Google Scholar 

  18. Hamel S, Casida ME, Salahub DR (2002) J Chem Phys 116:8276–8291

    Article  CAS  Google Scholar 

  19. Jellinek J, Acioli PH (2003) J Chem Phys 118:7783–7796

    Article  CAS  Google Scholar 

  20. Gritsenko OV, Braïda B, Baerends EJ (2003) J Chem Phys 119:1937–1950

    Article  CAS  Google Scholar 

  21. Janak JF (1978) Phys Rev B 18:7165–7168

    Article  CAS  Google Scholar 

  22. Baerends EJ, Gritsenko OV (1997) J Phys Chem A 101:5383–5403

    Article  CAS  Google Scholar 

  23. Bulat FA, Levy M, Politzer P (2009) J Phys Chem A 113:1384–1389

    Article  CAS  Google Scholar 

  24. Perdew JP, Norman MR (1982) Phys Rev B 26:5445–5450

    Article  CAS  Google Scholar 

  25. Stowasser R, Hoffmann R (1999) J Am Chem Soc 121:3414–3420

    Article  CAS  Google Scholar 

  26. Akola J, Manninen M, Häkkinen H, Landman U, Li X, Wang L-S (1999) Phys Rev B 60:R11297–R11300

    Article  CAS  Google Scholar 

  27. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  28. Politzer P, Abu-Awwad F (2000) J Comput Chem 21:227–238

    Article  Google Scholar 

  29. Nagy Á, Parr RG, Liu S (1996) Phys Rev A 53:3117–3121

    Article  CAS  Google Scholar 

  30. Gál T, Nagy Á (1997) Mol Phys 91:873–880

    Article  Google Scholar 

  31. Ghosh SK, Balbás LC (1985) J Chem Phys 83:5778–5783

    Article  CAS  Google Scholar 

  32. Ghosh SK, Berkowitz M, Parr RG (1984) Proc Natl Acad Sci USA 81:8028–8031

    Article  CAS  Google Scholar 

  33. van Leeuwen R, Baerends EJ (1994) Phys Rev A 49:2421–2431

    Article  Google Scholar 

  34. Ayers PW, Parr RG, Nagy Á (2002) Int J Quantum Chem 90:309–326

    Article  CAS  Google Scholar 

  35. Navarrete-López AM, Garza J, Vargas R (2008) J Chem Phys 128:104110 (1–8)

    Article  CAS  Google Scholar 

  36. Politzer P, Daiker KC (1973) Chem Phys Lett 20:309–316

    Article  CAS  Google Scholar 

  37. Delgado-Barrio G, Prat RF (1975) Phys Rev A 12:2288–2297

    Article  CAS  Google Scholar 

  38. Sperber G (1971) Int J Quantum Chem 5:189–214

    Article  Google Scholar 

  39. Weinstein H, Politzer P, Srebrznik S (1975) Theor Chim Acta 38:159–163

    Article  CAS  Google Scholar 

  40. Simas AM, Sagar RP, Ku ACT, Smith VH Jr (1988) Can J Chem 66:1923–1930

    Article  CAS  Google Scholar 

  41. Politzer P, Parr RG (1976) J Chem Phys 64:4634–4637

    Article  CAS  Google Scholar 

  42. Boyd RJ (1976) J Phys B 9:L69–L72

    Article  CAS  Google Scholar 

  43. Boyd RJ (1977) J Chem Phys 66:356–358

    Article  CAS  Google Scholar 

  44. Sen KD, Slamet M, Sahni V (1993) Chem Phys Lett 205:313–316

    Article  CAS  Google Scholar 

  45. Sahni V, Qian Z, Sen KD (2001) J Chem Phys 114:8784–8788

    Article  CAS  Google Scholar 

  46. Eickerling G, Reiher M (2008) J Chem Theory Comput 4:286–296

    Article  CAS  Google Scholar 

  47. Sagar RP, Ku ACT, Smith VH Jr, Simas AM (1988) J Chem Phys 88:4367–4374

    Article  CAS  Google Scholar 

  48. Shi Z, Boyd RJ (1988) J Chem Phys 88:4375–4377

    Article  CAS  Google Scholar 

  49. Kohout M, Savin A, Preuss H (1991) J Chem Phys 95:1928–1942

    Article  CAS  Google Scholar 

  50. Kohout M, Savin A (1996) Int J Quantum Chem 60:875–882

    Article  CAS  Google Scholar 

  51. Pacios LF, Gómez PC (1998) J Comput Chem 19:488–503

    Article  CAS  Google Scholar 

  52. Politzer P, Murray JS, Grice ME, Brinck T, Ranganathan S (1991) J Chem Phys 95:6699–6704

    Article  CAS  Google Scholar 

  53. Talman JD, Shadwick WF (1976) Phys Rev A 14:36–40

    Article  CAS  Google Scholar 

  54. Talman JD (1989) Comput Phys Commun 54:85–94

    Article  CAS  Google Scholar 

  55. Politzer P (1980) J Chem Phys 72:3027–3033

    Article  CAS  Google Scholar 

  56. Sen KD, Gayatri TV, Krishnaveni R, Kakkar M, Toufar H, Janssens GOA, Baekelandt BG, Schoonheydt RA, Mortier WJ (1995) Int J Quantum Chem 56:399–408

    Article  CAS  Google Scholar 

  57. Sen KD, Gayatri TV, Toufar H (1996) J Mol Struct THEOCHEM 361:1–13

    Article  CAS  Google Scholar 

  58. Pauling L (1932) J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  59. Pauling L (1942) The nature of the chemical bond, 2nd edn. Cornell University Press, Ithaca

    Google Scholar 

  60. Hinze J (1999) In: Maksic ZB, Orville-Thomas WJ (eds) Pauling’s Legacy. Modern Modelling of the Chemical Bond. Elsevier, Amsterdam, pp 189–212

    Chapter  Google Scholar 

  61. Pritchard HO, Skinner HA (1955) Chem Rev 55:745–786

    Article  CAS  Google Scholar 

  62. Ferreira R (1967) Adv Chem Phys 13:55–84

    Article  CAS  Google Scholar 

  63. Mullay J (1987) Struct Bond 66:1–25

    Article  CAS  Google Scholar 

  64. Sacher E, Currie JF (1988) J Electron Spectrosc Relat Phenom 46:173–177

    Article  CAS  Google Scholar 

  65. Politzer P, Grice ME, Murray JS (2001) J Mol Struct THEOCHEM 549:69–76

    Article  CAS  Google Scholar 

  66. Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547–3551

    Article  CAS  Google Scholar 

  67. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  68. Gopinathan MS, Whitehead MA (1980) Israel J Chem 19:209–214

    CAS  Google Scholar 

  69. Nguyen-Dang TT, Bader RWF, Essen H (1982) Int J Quantum Chem 22:1049–1058

    Article  CAS  Google Scholar 

  70. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  71. Gázquez JL, Ortiz E (1985) J Chem Phys 82:5565–5570

    Article  Google Scholar 

  72. Politzer P, Huheey JE, Murray JS, Grodzicki M (1992) J Mol Struct Theochem 259:99–120

    Article  Google Scholar 

  73. Politzer P, Murray JS (2006) Chem Phys Lett 431:195–198

    Article  CAS  Google Scholar 

  74. Politzer P, Murray JS, Concha MC, ** P (2007) Collect Czech Chem Commun 72:51–63

    Article  CAS  Google Scholar 

  75. Pearson RG (1990) Acc Chem Res 23:1–2

    Article  CAS  Google Scholar 

  76. Allen LC (1990) Acc Chem Res 23:175–176

    Article  CAS  Google Scholar 

  77. Allen LC (1989) J Am Chem Soc 111:9003–9014

    Article  CAS  Google Scholar 

  78. Mann JB, Meek TL, Allen LC (2000) J Am Chem Soc 122:2780–2783

    Article  CAS  Google Scholar 

  79. Mann JB, Meek TL, Knight ET, Capitani JF, Allen LC (2000) J Am Chem Soc 122:5132–5137

    Article  CAS  Google Scholar 

  80. Lide DR (ed) (1997) Handbook of chemistry and physics, 78th edn. CRC Press, Boca Raton

    Google Scholar 

  81. Allred AL, Rochow EG (1958) J Inorg Nucl Chem 5:264–268

    Article  CAS  Google Scholar 

  82. Politzer P, Murray JS, Grice ME (2005) Collect Czech Chem Commun 70:550–558

    Article  CAS  Google Scholar 

  83. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  84. Jameson CJ, Buckingham AD (1980) J Chem Phys 73:5684–5692

    Article  CAS  Google Scholar 

  85. Bonin KD, Kresin VV (1997) Electric-Dipole polarizabilities of atoms, molecules and clusters. World Scientific, Singapore

    Book  Google Scholar 

  86. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  87. Pearson RG (1993) Struct Bond 80:1–10

    Article  CAS  Google Scholar 

  88. Huheey JE (1965) J Phys Chem 69:3284–3291

    Article  CAS  Google Scholar 

  89. Huheey JE (1971) J Org Chem 36:204–205

    Article  CAS  Google Scholar 

  90. Politzer P (1987) J Chem Phys 86:1072–1073

    Article  CAS  Google Scholar 

  91. Politzer P, Huheey JE, Murray JS, Grodzicki M (1992) J Mol Struct Theochem 259:99–120

    Article  Google Scholar 

  92. Ghanty TK, Ghosh SK (1993) J Phys Chem 97:4951–4953

    Article  CAS  Google Scholar 

  93. Hati S, Datta D (1994) J Phys Chem 98:10451–10454

    Article  CAS  Google Scholar 

  94. Símón-Manso V, Fuentealba P (1998) J Phys Chem A 102:2029–2032

    Article  Google Scholar 

  95. Glasstone S (1940) Text-book of physical chemistry. Van Nostrand, New York

    Google Scholar 

  96. Teixeira-Dias JJC, Murrell JN (1970) Mol Phys 19:329–335

    Article  CAS  Google Scholar 

  97. Dmitrieva IK, Plindov GI (1983) Phys Scr 27:402–406

    Article  CAS  Google Scholar 

  98. Gough KM (1989) J Chem Phys 91:2424–2432

    Article  CAS  Google Scholar 

  99. Brinck T, Murray JS, Politzer P (1993) J Chem Phys 98:4305–4306

    Article  CAS  Google Scholar 

  100. ** P, Murray JS, Politzer P (2004) Int J Quantum Chem 96:394–401

    Article  CAS  Google Scholar 

  101. Fricke B (1986) J Chem Phys 84:862–866

    Article  CAS  Google Scholar 

  102. Politzer P, ** P, Murray JS (2002) J Chem Phys 117:8197–8202

    Article  CAS  Google Scholar 

  103. Stott MJ, Zaremba E (1980) Phys Rev A 21:12–23

    Article  CAS  Google Scholar 

  104. Vela A, Gázquez JL (1990) J Am Chem Soc 112:1490–1492

    Article  CAS  Google Scholar 

  105. ** P, Brinck T, Murray JS, Politzer P (2003) Int J Quantum Chem 95:632–637

    Article  CAS  Google Scholar 

  106. ** P, Murray JS, Politzer P (2006) Int J Quantum Chem 106:2347–2355

    Article  CAS  Google Scholar 

  107. Politzer P, Murray JS, Grice ME (1993) Struct Bond 80:101–114

    Article  CAS  Google Scholar 

  108. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  109. Bulat FA, Toro-Labbé A, Brinck T, Murray JS, Politzer P (2010) J Mol Model, in press (doi:10.1007/s00894-010-0692-x)

  110. Scrocco E, Tomasi J (1978) Adv Quantum Chem 11:115–193

    Article  CAS  Google Scholar 

  111. Politzer P, Daiker KC (1981) In: Deb BM (ed) The force concept in chemistry. Van Nostrand Reinhold, New York, ch 6

    Google Scholar 

  112. Politzer P, Murray JS (1991) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, Vol 2. New York, VHS, ch 7

    Google Scholar 

  113. Murray JS, Sen K (eds) (1996) Molecular electrostatic potentials: concepts and applicatons. Elsevier, Amsterdam

    Google Scholar 

  114. Brinck T, Murray JS, Politzer P, Carter RE (1991) J Org Chem 56:2934–2936

    Article  CAS  Google Scholar 

  115. Brinck T, Murray JS, Politzer P (1991) J Org Chem 56:5012–5015

    Article  CAS  Google Scholar 

  116. Murray JS, Brinck T, Politzer P (1992) J Mol Struct Theochem 255:271–281

    Article  Google Scholar 

  117. Brinck T, Murray JS, Politzer P (1993) Int J Quantum Chem 48:73–88

    Article  CAS  Google Scholar 

  118. Gross KC, Seybold PG, Peralta-Inga Z, Murray JS, Politzer P (2001) J Org Chem 66:6919–6925

    Article  CAS  Google Scholar 

  119. Ma Y, Gross KC, Hollingsworth CA, Seybold PG, Murray JS (2004) J Mol Model 10:235–239

    Article  CAS  Google Scholar 

  120. Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem 88:19–27

    Article  CAS  Google Scholar 

  121. Russo N, Toscano M, Grand A, Mineva T (2000) J Phys Chem A 104:4017–4021

    Article  CAS  Google Scholar 

  122. Bulat FA, Murray JS, Politzer P, in preparation

  123. Toro-Labbé A, Jaque P, Murray JS, Politzer P (2005) Chem Phys Lett 407:143–146

    Article  CAS  Google Scholar 

  124. Murray JS, Seminario JM, Politzer P, Sjoberg P (1990) Int J Quantum Chem, Quantum Chem Symp 38(S24):645–653

    Article  Google Scholar 

  125. Clar E (1972) The aromatic sextet. Wiley, London

    Google Scholar 

  126. Murray JS, Abu-Awwad F, Politzer P (2000) J Mol Struct Theochem 501–502:241–250

    Article  Google Scholar 

  127. Schmidt O (1938) Z Phys Chem 39:39

    Google Scholar 

  128. Daudel P, Daudel R (1949) Bull Soc Chim Biol 31:353

    CAS  Google Scholar 

  129. Pullman A, Pullman B (1955) Adv Cancer Res 3:117

    Article  CAS  Google Scholar 

  130. Cromwell NH, Graff MA (1952) J Org Chem 17:414–425

    Article  CAS  Google Scholar 

  131. Wiberg KB (1965) Rec Chem Prog 26:143

    CAS  Google Scholar 

  132. Charton M (1970) In: Zabicky J (ed) Chemistry of the alkenes, vol 3. New York, Wiley-Interscience, ch 10

    Google Scholar 

  133. Wiberg KB (1984) Acc Chem Res 17:379–386

    Article  CAS  Google Scholar 

  134. Jackson JE, Allen LC (1984) J Am Chem Soc 106:591–599

    Article  CAS  Google Scholar 

  135. Politzer P, Jayasuriya K (1986) J Mol Struct (Theochem) 135:245–252

    Article  Google Scholar 

  136. Cavalieri E, Calvin M (1972) J Chem Soc Perkin 1:1253–1256

    Article  Google Scholar 

  137. Clar E (1964) Polycyclic hydrocarbons, 1-2. Academic Press, New York

    Google Scholar 

  138. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Book  Google Scholar 

  139. Ajayan PM (1999) Chem Rev 99:1787–1800

    Article  CAS  Google Scholar 

  140. Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  141. Peralta-Inga Z, Murray JS, Grice ME, Boyd S, O’Connor CJ, Politzer P (2001) J Mol Struct Theochem 549:147–158

    Article  CAS  Google Scholar 

  142. Politzer P, Murray JS, Lane P, Concha MC (2006) In: Balandin AA, King KL (eds) Handbook of semiconductor nanostructures and devices, Vol. 2. American Scientific Publishers, Los Angeles, Ch 7

    Google Scholar 

  143. Politzer P, Murray JS, Lane P, Concha MC (2006) In: Sokalski WA (ed) Molecular materials with specific interactions: modeling & design. Springer, London, Ch 5

    Google Scholar 

  144. Dinadayalene TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) J Chem Theor Comp 6:1351-1357

    Google Scholar 

  145. Politzer P, Murray JS, Lane P, Concha MC, ** P, Peralta-Inga Z (2005) J Mol Model 11:258–264

    Article  CAS  Google Scholar 

  146. **ao D, Bulat FA, Yang W, Beratan D (2008) Nano Lett 8:2814–2818

    Article  CAS  Google Scholar 

  147. Peralta-Inga Z, Lane P, Murray JS, Boyd S, Grice ME, O’Connor CJ, Politzer P (2003) Nano Lett 3:21–28

    Article  CAS  Google Scholar 

  148. Politzer P, Lane P, Murray JS, Concha MC (2005) J Mol Model 11:1–7

    Article  CAS  Google Scholar 

  149. Bulat FA, Murray JS, Politzer P, unpublished

  150. Ayers PW, Nagy A (2007) J Chem Phys 126:144108 (1-6)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politzer, P., Murray, J.S. & Bulat, F.A. Average local ionization energy: A review. J Mol Model 16, 1731–1742 (2010). https://doi.org/10.1007/s00894-010-0709-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0709-5

Keywords

Navigation