Natural Emissions on Global Scale

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Air Quality and Climate Change

Abstract

Precise characterization of sources of chemical compounds from the Earth’s surface into the atmosphere is crucial information for air quality and climate models. In this chapter, we review the main sources of natural emissions including emissions from vegetation, soils, oceans, volcanoes, and emissions of dust. Methodology for emission estimation is described for each source, identifying the main emitted chemical species and processes driving the emission. Examples of input information to the emission models are given together with global emission estimates and their spatiotemporal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kesselmeier J, Staudt M (1999) Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem 33:23–88

    Article  Google Scholar 

  2. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Tay- lor, J., and Zimmerman, P. (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892

    Article  Google Scholar 

  3. Sindelarova K, Granier C, Bouarar I, Guenther A, Tilmes S, Stavrakou T, Müller J-F, Kuhn U, Stefani P, Knorr W (2014) Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years. Atmos Chem Phys 14:9317–9341. https://doi.org/10.5194/acp-14-9317-2014

    Article  Google Scholar 

  4. Atkinson R, Arey J (2003) Gas-phase tropospheric chemistry of bio- genic volatile organic compounds: a review. Atmos Environ 37:197–219

    Article  Google Scholar 

  5. Poisson N, Kanakidou M, Crutzen PJ (2000) Impact of non- methane hydrocarbons on tropospheric chemistry and the oxi- dizing power of the global troposphere: 3-dimensional modelling results. J Atmos Chem 36:157–230

    Article  Google Scholar 

  6. Pfister G, Emmons L, Hess P, Lamarque J-F, Orlando J, Walters S, Guenther A, Palmer P, Lawrence P (2008) Contribution of isoprene to chemical budgets: a model tracer study with the NCAR CTM MOZART-4. J Geophys Res Atmos 113:D05308. https://doi.org/10.1029/2007JD008948

    Article  Google Scholar 

  7. Curci G, Beekman M, Vautard R, Smiatek G, Steinbrecher R (2009) Modelling study of the impact of isoprene and terpene bio- genic emissions on European ozone levels. Atmos Environ 43:1444–1455

    Article  Google Scholar 

  8. Aksoyoglu S, Keller J, Oderbolz DC, Barmpadimos I, Prévôt ASH, Baltensperger U (2012) Sensitivity of ozone and aerosols to precursor emissions in Europe. Int J Environ Pollut 50:1–4

    Article  Google Scholar 

  9. Tagaris E, Sotiropoulou REP, Gounaris N, Andronopoulos S, Vlachogiannis D (2014) Impact of biogenic emissions on ozone and fine particles over Europe: comparing effects of temperature increase and a potential anthropogenic NOx emissions abatement strategy. Atmos Environ 98:214–223. https://doi.org/10.1016/j.atmosenv.2014.08.056

    Article  Google Scholar 

  10. Griffin RJ, David RCI, Seinfeld JH, Dabdub D (1999) Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons. Geophys Res Lett 26:2721–2724

    Article  Google Scholar 

  11. Gelencsér A, May B, Simpson D, Sánchez-Ochoa A, Kasper-Giebl A, Puxbaum H, Caseiro A, Pio C, Legrand M (2007) Source apportionment of PM2.5 organic aerosol over Europe: primary/secondary, natural/anthropogenic, fossil/biogenic origin. J Geophys Res 112:D23S04. https://doi.org/10.1029/2006JD008094

    Article  Google Scholar 

  12. Ehn M, Thornton JA, Kleist E, Sipila M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B, Lopez-Hilfiker F, Andres S, Acir I-H, Rissanen M, Joki- nen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurten, T., Nielsen, L. B., Jorgensen, S., Kjaer- gaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petaja, T., Wahner, A., Kerminen, V.-M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F. (2014) A large source of low- volatility secondary organic aerosol. Nature 506:476–479. https://doi.org/10.1038/nature13032

    Article  Google Scholar 

  13. van Donkelaar A, Martin RV, Park RJ, Heald CL, Tzung- May Fu, Hong Liao, and Guenther, A. (2007) Model evidence for a significant source of secondary organic aerosol from isoprene. Atmos Environ 41:1267–1274

    Article  Google Scholar 

  14. Simpson D, Yttri K, Klimont Z, Kupiainen K, Caseiro A, Gelencsér A, Pio C, Legrand M (2007) Modeling Carbona- ceous Aerosol over Europe. Analysis of the CARBOSOL and EMEP EC/OC campaigns. J Geophys Res 112:D23S14. https://doi.org/10.1029/2006JD008158

    Article  Google Scholar 

  15. Wu K, Yang X, Chen D, Gu S, Lu Y, Jiang Q, Wang K, Ou Y, Qian Y, Shao P, Lu S (2020) Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmos Res 231:104656. https://doi.org/10.1016/j.atmosres.2019.104656

    Article  Google Scholar 

  16. Hewitt CN, Karl T, Langford B, Owen SM, Possel M (2011) Quantification of VOC emission rates from biosphere, TRAC-Trend. Anal Chem 30:937–944. https://doi.org/10.1016/j.trac.2011.03.008

    Article  Google Scholar 

  17. Kuhn U, Andreae MO, Ammann C, Araújo AC, Branca-Leoni E, Ciccioli P, Dindorf T, Frattoni M, Gatti LV, Ganzeveld L, Kruijt B, Lelieveld J, Lloyd J, Meixner FX, Nobre AD, Pöschl U, Spirig C, Stefani P, Thielmann A, Valentini R, Kesselmeier J (2007) Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower- based and airborne measurements, and implications on the atmo- spheric chemistry and the local carbon budget. Atmos Chem Phys 7:2855–2879. https://doi.org/10.5194/acp-7-2855-2007

    Article  Google Scholar 

  18. Karl T, Guenther A, Yokelson RJ, Greenberg J, Poto-snak M, Blake DR, Artaxo P (2007) The tropical forest and fire esmissions experiment: emission, chemistry, and trans- port of biogenic volatile organic compounds in the lower at- mospehere over Amazonia. J Geophys Res 112:D18302. https://doi.org/10.1029/2007JD008539

    Article  Google Scholar 

  19. Langford B, Misztal PK, Nemitz E, Davison B, Helfter C, Pugh TAM, MacKenzie AR, Lim SF, Hewitt CN (2010) Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest. Atmos Chem Phys 10:8391–8412. https://doi.org/10.5194/acp-10-8391-2010

    Article  Google Scholar 

  20. Misztal PK, Nemitz E, Langford B, Di Marco CF, Phillips GJ, Hewitt CN, MacKenzie AR, Owen SM, Fowler D, Heal MR, Cape JN (2011) Direct ecosystem fluxes of volatile organic compounds from oil palms in South-East Asia, At- mos. Chem Phys 11:8995–9017. https://doi.org/10.5194/acp-11-8995-2011

    Article  Google Scholar 

  21. Müller J-F, Stavrakou T, Wallens S, De Smedt I, Van Roozendael M, Potosnak MJ, Rinne J, Munger B, Gold-stein A, Guenther AB (2008) Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model. Atmos Chem Phys 8:1329–1341. https://doi.org/10.5194/acp-8-1329-2008

    Article  Google Scholar 

  22. Schurgers G, Arneth A, Holzinger R, Goldstein AH (2009) Process-based modelling of biogenic monoterpene emissions combining production and release from storage. Atmos Chem Phys 9:3409–3423. https://doi.org/10.5194/acp-9-3409-2009

    Article  Google Scholar 

  23. Guenther AB, Jiang X, Heald CL, Sakulyanontvittaya T, Duhl T, Emmons LK, Wang X (2012) The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev 5:1471–1492. https://doi.org/10.5194/gmd-5-1471-2012

    Article  Google Scholar 

  24. Sindelarova K, Markova J, Simpson D, Huszar P, Karlicky J, Darras S, Granier C (2022) High-resolution biogenic global emission inventory for the time period 2000–2019 for air quality modelling. Earth Syst Sci Data 14:251–270. https://doi.org/10.5194/essd-14-251-2022

    Article  Google Scholar 

  25. Simpson D, Guenther A, Hewitt C, Steinbrecher R (1995) Biogenic emissions in Europe 1. Estimates and uncertainties. J Geo Phys Res 100:22875–22890

    Article  Google Scholar 

  26. Simpson D, Winiwarter W, Borjesson G, Cinderby S, Ferreiro A, Guenther A, Hewitt N, Janson R, Khalil MAK, Owen S, Pierce TE, Puxbaum H, Shearer M, Skiba U, Stein-brecher R, Tarrasón L, Öquist MG (1999) Inventorying emis-sions from Nature in Europe. J Geophys Res 104:8113–8152

    Article  Google Scholar 

  27. Steinbrecher R, Smiatek G, Köble R, Seufert G, Theloke J, Hauff K, Ciccioli P, Vauratd R, Curci G (2009) Intra- and inter-annual variability of VOC emissions from natural and semi- natural vegetation in Europe and neighbouring countries. Atmos Environ 43:1380–1391

    Article  Google Scholar 

  28. Karl M, Guenther A, Köble R, Leip A, Seufert G (2009) A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models. Bio Geosci 6:1059–1087. https://doi.org/10.5194/bg-6-1059-2009

    Article  Google Scholar 

  29. Emmerson KM, Cope ME, Galbally IE, Lee S, Nelson PF (2018) Isoprene and monoterpene emissions in south-east Australia: comparison of a multi-layer canopy model with MEGAN and with atmospheric observations. Atmos Chem Phys 18:7539–7556. https://doi.org/10.5194/acp-18-7539-2018

    Article  Google Scholar 

  30. Palmer PI, Abbot DS, Fu T-M, Jacob DJ, Chance K, Kurosu TP, Guenther A, Wiedinmyer C, Stanton JC, Pilling MJ, Pressley SN, Lamb B, Sumner AL (2006) Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. J Geophys Res 111:D12315. https://doi.org/10.1029/2005JD006689

    Article  Google Scholar 

  31. Millet DB, Jacob DJ, Boersma KF, Fu T-M, Kurosu TP, Chance K, Heald CL, Guenther A (2008) Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor. J Geophys Res-Atmos 113:D02307. https://doi.org/10.1029/2007JD008950

    Article  Google Scholar 

  32. Stavrakou T, Müller J-F, De Smedt I, Van Roozendael M, van der Werf GR, Giglio L, Guenther A (2009) Global emissions of non-methane hydrocarbons deduced from SCIA- MACHY formaldehyde columns through 2003–2006. Atmos Chem Phys 9:3663–3679. https://doi.org/10.5194/acp-9-3663-2009

    Article  Google Scholar 

  33. Bauwens M, Stavrakou T, Müller J-F, De Smedt I, Van Roozendael M, van der Werf GR, Wiedinmyer C, Kaiser JW, Sindelarova K, Guenther A (2016) Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmos Chem Phys 16:10133–10158. https://doi.org/10.5194/acp-16-10133-2016

    Article  Google Scholar 

  34. Kaiser J, Jacob DJ, Zhu L, Travis KR, Fisher JA, González Abad G, Zhang L, Zhang X, Fried A, Crounse JD, St. Clair JM, Wisthaler A (2018) High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: application to the southeast US, At- mos. Chem Phys 18:5483–5497. https://doi.org/10.5194/acp-18-5483-2018

    Article  Google Scholar 

  35. Niinemets Ü, Tenhunen JD, Harley PC, Steinbrecher R (1999) A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus. Plant Cell Environ 22:1319–1335

    Article  Google Scholar 

  36. Niinemets Ü, Seufert G, Steinbrecher R, Tenhunen JD (2002) A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species. New Phytol 153:257–275

    Article  Google Scholar 

  37. Arneth A, Niinemets Ü, Pressley S, Bäck J, Hari P, Karl T, Noe S, Prentice IC, Serça D, Hickler T, Wolf A, Smith B (2007b) Process-based estimates of terrestrial ecosys- tem isoprene emissions: incorporating the effects of a di- rect CO2-isoprene interaction. Atmos Chem Phys 7:31–53. https://doi.org/10.5194/acp-7-31-2007

    Article  Google Scholar 

  38. Sitch S, Smith B, Prentice IC, Arneth A, Bondeau A, Cramer W, Kaplan J, Levis S, Lucht W, Sykes M, Thon- icke, K. and Venevsky, S. (2003) Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dy- namic global vegetation model. Glob Chang Biol 9:161–185

    Article  Google Scholar 

  39. Smith B, Prentice IC, Sykes MT (2001) Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob Ecol Biogeogr 10:621–637

    Google Scholar 

  40. Best MJ, Pryor M, Clark DB, Rooney GG, Essery RLH, Me ́nard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J. (2011) The joint UK land environment simulator (JULES), model description – part 1: energy and water fluxes. Geosci Model Dev Discuss 4:595–640. https://doi.org/10.5194/gmdd-4-595-2011

    Article  Google Scholar 

  41. Clark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E, Boucher O, Harding RJ, Cox PM (2011) The joint UK land environment simulator (JULES), model description – part 2: carbon fluxes and vegetation. Geosci Model Dev Discuss 4:641–688. https://doi.org/10.5194/gmdd-4-641-2011

    Article  Google Scholar 

  42. Pacifico F, Harrison SP, Jones CD, Arneth A, Sitch S, Wee- don, G. P., Barkley, M. P., Palmer, P. I., Serça, D., Potosnak, M., Fu, T-M., Goldstein, A., Bai, J., and Schurgers, G. (2011) Evaluation of a photosynthesis-based biogenic isoprene emission scheme in JULES and simulation of isoprene emissions under present- day climate conditions. Atmos Chem Phys 11:4371–4389. https://doi.org/10.5194/acp-11-4371-2011

    Article  Google Scholar 

  43. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos Chem Phys 6:3181–3210. https://doi.org/10.5194/acp-6-3181-2006

    Article  Google Scholar 

  44. Lawrence PJ, Chase TN (2007) Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J Geophys Res Biogeo 112:G01023. https://doi.org/10.1029/2006JG000168

    Article  Google Scholar 

  45. Stavrakou T, Müller J-F, Bauwens M, De Smedt I, Van Roozendael M, De Mazière M, Vigouroux C, Hendrick F, George M, Clerbaux C, Coheur P-F, Guenther A (2015) How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? Atmos Chem Phys 15:11861–11884. https://doi.org/10.5194/acp-15-11861-2015

    Article  Google Scholar 

  46. Stavrakou T, Müller J-F, Bauwens M, De Smedt I, Van Roozendael M, Guenther A, Wild M, **a X (2014) Isoprene emissions over Asia 1979–2012: impact of climate and land-use changes. Atmos Chem Phys 14:4587–4605. https://doi.org/10.5194/acp-14-4587-2014

    Article  Google Scholar 

  47. Arneth A, Miller PA, Scholze M, Hickler T, Schurg-ers G, Smith B, Prentice IC (2007a) CO2 inhibition of global terrestrial isoprene emissions: potential implications for atmospheric chemistry. Geophys Res Lett 34:L18813. https://doi.org/10.1029/2007GL030615

    Article  Google Scholar 

  48. Firestone MK, Davidson EA (1989) Mikrobiological basis of NO and N2O production and consumption in soil. In Exchange of trace gases between terrestrial ecosystems and the atmosphere, edited by: Andreae, M. O. and Schimel, D. S., 7–21

    Google Scholar 

  49. Ganzeveld LN, Lelieveld J, Dentener FJ, Krol MC, Roelofs G-J (2002) Atmosphere-biosphere trace gas exchanges simulated with a single-column model. J Geophys Res 107:4320. https://doi.org/10.1029/2001JD000684

    Article  Google Scholar 

  50. Yienger JJ, Levy H II (1995) Empirical model of global soil- biogenic NOx emissions. J Geophys Res 100:11447–11464

    Article  Google Scholar 

  51. Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosyst 48:37–50

    Article  Google Scholar 

  52. Holland EA, Dentener FJ, Braswell BH (1999) Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46(7–43):1999. https://doi.org/10.1023/A:1006148011944

    Article  Google Scholar 

  53. Stohl A, Williams E, Wotawa G, Kromp-Kolb H (1996) A European inventory of soil nitric oxide emissions and the effect of these emissions on the photochemical formation of ozone. Atmos Environ 30(22):3741–3755., ISSN 1352-2310. https://doi.org/10.1016/1352-2310(96)00104-5

    Article  Google Scholar 

  54. Steinkamp J, Ganzeveld LN, Wilcke W, Lawrence MG (2009) Influence of modelled soil biogenic NO emissions on related trace gases and the atmospheric oxidizing efficiency. Atmos Chem Phys 9:2663–2677. https://doi.org/10.5194/acp-9-2663-2009

    Article  Google Scholar 

  55. Oikawa P, Ge C, Wang J et al (2015) Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region. Nat Commun 6:8753. https://doi.org/10.1038/ncomms9753

    Article  Google Scholar 

  56. Hall SJ, Matson PA, Roth PM (1996) NOx emissions from soil: implications for air quality modeling in agricultural regions, annual review of energy and the environment. 21:311–346. https://doi.org/10.1146/annurev.energy.21.1.311

  57. Lu X, Ye X, Zhou M et al (2021) The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nat Commun 12:5021. https://doi.org/10.1038/s41467-021-25147-9

    Article  Google Scholar 

  58. Müller J-F, Stavrakou T (2005) Inversion of CO and NOx emissions using the adjoint of the IMAGES model. Atmos Chem Phys 5(1157–1186):2005. https://doi.org/10.5194/acp-5-1157-2005

    Article  Google Scholar 

  59. Hudman RC, Russell AR, Valin LC, Cohen RC (2010) Interannual variability in soil nitric oxide emissions over the United States as viewed from space. Atmos Chem Phys 10:9943–9952. https://doi.org/10.5194/acp-10-9943-2010

    Article  Google Scholar 

  60. Visser AJ, Boersma KF, Ganzeveld LN, Krol MC (2019) European NOx emissions in WRF-Chem derived from OMI: impacts on summertime surface ozone. Atmos Chem Phys 19:11821–11841. https://doi.org/10.5194/acp-19-11821-2019

    Article  Google Scholar 

  61. Lawrence MG, Crutzen PJ, Rasch PJ, Eaton BE, Mahowald NM (1999) A model for studies of tropospheric photo- chemistry: description, global distributions, and evaluation. J Geophys Res 104:26245–26277

    Article  Google Scholar 

  62. Hauglustaine DA, Hourdin F, Jourdain L, Filiberti, M.- A., Walters, S., Lamarque, J.-F., and Holland, E. A. (2004) Interactive chemistry in the Laboratoire de Me ́t ‘eorologie Dynamique general circulation model: description and background tropospheric chemistry evaluation. J Geophys Res 109:D04341. https://doi.org/10.1029/2003JD003957

    Article  Google Scholar 

  63. Emmons LK, Walters S, Hess PG, Lamarque J-F, Pfister GG, Fillmore D, Granier C, Guenther A, Kinnison D, Laepple T, Orlando J, Tie X, Tyndall G, Wiedinmyer C, Baughcum SL, Kloster S (2010) Description and evaluation of the model for ozone and related chemical tracers, version 4 (MOZART-4). Geosci Model Dev 3:43–67. https://doi.org/10.5194/gmd-3-43-2010

    Article  Google Scholar 

  64. Potter P, Ramankutty N, Bennett EM, Donner SD (2012) Global fertilizer and manure, version 1: nitrogen fertilizer application. Palisades. NASA Socioeconomic Data and Applications Center (SEDAC), New York. https://doi.org/10.7927/H4Q81B0R. Accessed 27.2.2023

    Book  Google Scholar 

  65. Potter P, Ramankutty N, Bennett EM, Donner SD (2010) Characterizing the spatial patterns of global fertilizer application and manure production. Earth Interact 14(2):1–22. https://doi.org/10.1175/2009EI288.1

    Article  Google Scholar 

  66. Bouwman AF, Boumans LJM, Batjes NH (2002) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochem Cy 16:1080. https://doi.org/10.1029/2001GB001812

    Article  Google Scholar 

  67. Steinkamp J, Lawrence MG (2011) Improvement and evaluation of simulated global biogenic soil NO emissions in an AC-GCM. Atmos Chem Phys 11:6063–6082. https://doi.org/10.5194/acp-11-6063-2011

    Article  Google Scholar 

  68. Simpson D, Christensen J, Engardt M, Geels C, Nyiri A, Soares J, Sofiev M, Wind P, Langner J (2014) Impacts of climate and emis- Sion changes on nitrogen deposition in Europe: a multi-model study. Atmos Chem Phys 14:6995–7017. https://doi.org/10.5194/acp-14-0073-2014, http://www.atmos-chem-phys.net/14/0073/2014/acp-14-0073-2014.html

    Article  Google Scholar 

  69. Simpson D, Darras S (2021) Global soil NO emissions for atmospheric chemical transport modelling: CAMS-GLOB-SOIL v2.2, Earth Syst Sci Data Discuss. [preprint]. https://doi.org/10.5194/essd-2021-221

  70. Yan XY, Ohara T, Akimoto I (2005) Statistical modeling of global soil NOx emissions. Global Biogeochem Cycles 19 https://doi.org/10.1029/2004GB002276

  71. Hudman RC, Moore NE, Mebust AK, Martin RV, Russell AR, Valin LC, Cohen RC (2012) Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmos Chem Phys 12:7779–7795. https://doi.org/10.5194/acp-12-7779-2012

    Article  Google Scholar 

  72. Weng H, Lin J, Martin R, Millet DB, Jaeglé L, Ridley D, Keller C, Li C, Du M, Meng J (2020) Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile organic compounds. Scientific Data 7:148. https://doi.org/10.1038/s41597-020-0488-5

    Article  Google Scholar 

  73. Simpson D, Benedictow A, Berge H, Bergström R, Emberson LD, Fagerli H, Flechard CR, Hayman GD, Gauss M, Jonson JE, Jenkin ME, Nyíri A, Richter C, Semeena VS, Tsyro S, Tuovinen J-P, Valdebenito A, Wind P (2012) The EMEP MSC- W chemical transport model – technical description. Atmos Chem Phys 12:7825–7865. https://doi.org/10.5194/acp-12-7825-2012

    Article  Google Scholar 

  74. Schwede DB, Simpson D, Tan J, Fu JS, Dentener F, Du E, deVries W (2018) Spatial variation of modelled total, dry and wet nitrogen deposition to forests at global scale. Environ Pollut 2018(243):1287–1301, http://www.sciencedirect.com/science/article/pii/S0269749118327386

    Article  Google Scholar 

  75. Sander R, Acree WE, De Visscher A et al (2021) Henry’s law constants. Pure Appl Chem:71–85. https://doi.org/10.1515/PAC-2020-0302

  76. Liss PS, Marandino CA, Dahl EE et al (2014) Short-lived trace gases in the surface ocean and the atmosphere. Ocean Interact Gases Part 1:1–54. https://doi.org/10.1007/978-3-642-25643-1_1/FIGURES/00019

    Article  Google Scholar 

  77. Johnson MT (2010) A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas. Ocean Sci 6:913–932. https://doi.org/10.5194/OS-6-913-2010

    Article  Google Scholar 

  78. Garbe CS, Rutgersson A, Boutin J et al (2014) Transfer across the air-sea interface. Ocean Interact Gases Part 1:55–112. https://doi.org/10.1007/978-3-642-25643-1_2/FIGURES/00027

    Article  Google Scholar 

  79. Liss P, Slater PG (1974) Flux of gases across the air-sea interface. Nature 247:181–184

    Article  Google Scholar 

  80. Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr Methods 12:351–362. https://doi.org/10.4319/lom.2014.12.351

    Article  Google Scholar 

  81. Bell TG, De Bruyn W, Miller SD et al (2013) Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos Chem Phys 13:11073–11087. https://doi.org/10.5194/ACP-13-11073-2013

    Article  Google Scholar 

  82. Lennartz ST, Krysztofiak G, Marandino CA et al (2015) Modelling marine emissions and atmospheric distributions of halocarbons and dimethyl sulfide: the influence of prescribed water concentration vs. prescribed emissions. Atmos Chem Phys 15:11753–11772. https://doi.org/10.5194/acp-15-11753-2015

    Article  Google Scholar 

  83. Ho DT, Law CS, Smith MJ et al (2006) Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys Res Lett 33. https://doi.org/10.1029/2006GL026817

  84. Ho DT, Zappa CJ, Mcgillis WR et al (2004) Influence of rain on air-sea gas exchange: lessons from a model ocean. J Geophys Res Ocean 109:8–18. https://doi.org/10.1029/2003JC001806

    Article  Google Scholar 

  85. Asher WE, Wanninkhof R (1998) The effect of bubble-mediated gas transfer on purposeful dual-gaseous tracer experiments. J Geophys Res Ocean 103:10555–10560. https://doi.org/10.1029/98JC00245

    Article  Google Scholar 

  86. Zavarsky A, Goddijn-Murphy L, Steinhoff T, Marandino CA (2018) Bubble-mediated gas transfer and gas transfer suppression of DMS and CO2. J Geophys Res Atmos 123:6624–6647. https://doi.org/10.1029/2017JD028071

    Article  Google Scholar 

  87. Mustaffa NIH, Ribas-Ribas M, Banko-Kubis HM, Wurl O (2020) Global reduction of in situ CO2 transfer velocity by natural surfactants in the sea-surface microlayer. Proc R Soc A 476. https://doi.org/10.1098/RSPA.2019.0763

  88. Liss PS, Merlivat L (1986) Air-Sea gas exchange rates: introduction and synthesis. Role Air Sea Exch Geochemical Cycl:113–127. https://doi.org/10.1007/978-94-009-4738-2_5

  89. Miller SD, Marandino C, Saltzman ES (2010) Ship-based measurement of air-sea CO2 exchange by eddy covariance. J Geophys Res Atmos 115:2304. https://doi.org/10.1029/2009JD012193

    Article  Google Scholar 

  90. Jiao N, Herndl GJ, Hansell DA et al (2011) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599. https://doi.org/10.1038/nrmicro2386

    Article  Google Scholar 

  91. Dittmar T, Lennartz ST, Buck-Wiese H, et al (2021) The enigmatic persistence of dissolved organic matter in the oceans. Nat Rev Earth Environ 570–583. https://doi.org/10.1038/s43017-021-00183-7

  92. Saunois MR, Stavert A, Poulter B et al (2020) The global methane budget 2000-2017. Earth Syst Sci Data 12:1561–1623. https://doi.org/10.5194/ESSD-12-1561-2020

    Article  Google Scholar 

  93. Weber T, Wiseman NA, Kock A (2019) Global Ocean methane emissions dominated by shallow coastal waters. Nat Commun 10:4584. https://doi.org/10.1038/s41467-019-12541-7

    Article  Google Scholar 

  94. Karl DM, Beversdorf L, Björkman KM et al (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478. https://doi.org/10.1038/ngeo234

    Article  Google Scholar 

  95. Ciais P, Sabine C, Bala G et al (2013) Carbon and other biogeochemical cycles. In: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  96. Yang S, Chang BX, Warner MJ et al (2020) Global reconstruction reduces the uncertainty of oceanic nitrous oxide emissions and reveals a vigorous seasonal cycle. Proc Natl Acad Sci U S A 117. https://doi.org/10.1073/PNAS.1921914117/-/DCSUPPLEMENTAL

  97. Ji Q, Buitenhuis E, Suntharalingam P et al (2018) Global nitrous oxide production determined by oxygen sensitivity of nitrification and denitrification. Global Biogeochem Cycles 32:1790–1802. https://doi.org/10.1029/2018GB005887

    Article  Google Scholar 

  98. Arévalo-Martínez DL, Kock A, Löscher CR et al (2015) Massive nitrous oxide emissions from the tropical South Pacific Ocean. Nat Geosci 87(8):530–533. https://doi.org/10.1038/ngeo2469

    Article  Google Scholar 

  99. Marandino CA, De Bruyn WJ, Miller SD et al (2005) Oceanic uptake and the global atmospheric acetone budget. Geophys Res Lett 32. https://doi.org/10.1029/2005GL023285

  100. Yang M, Beale R, Liss P et al (2014) Air-sea fluxes of oxygenated volatile organic compounds across the Atlantic Ocean. Atmos Chem Phys 14:7499–7517. https://doi.org/10.5194/ACP-14-7499-2014

    Article  Google Scholar 

  101. Schlundt C, Tegtmeier S, Lennartz ST et al (2017) Oxygenated volatile organic carbon in the western Pacific convective center: ocean cycling, air-sea gas exchange and atmospheric transport. Atmos Chem Phys 17:10837–10854. https://doi.org/10.5194/acp-17-10837-2017

    Article  Google Scholar 

  102. Singh HB, Tabazadeh A, Evans MJ et al (2003) Oxygenated volatile organic chemicals in the oceans: inferences and implications based on atmospheric observations and air-sea exchange models. Geophys Res Lett 30:1862. https://doi.org/10.1029/2003GL017933

    Article  Google Scholar 

  103. Stefels J, Steinke M, Turner S et al (2007) Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling. Biogeochemistry 83:245–275. https://doi.org/10.1007/S10533-007-9091-5/TABLES/6

    Article  Google Scholar 

  104. Hulswar S, Simó R, Galí M et al (2022) Third revision of the global surface seawater dimethyl sulfide climatology (DMS-Rev3). Earth Syst Sci Data 14:2963–2987. https://doi.org/10.5194/ESSD-14-2963-2022

    Article  Google Scholar 

  105. Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric Sulphur, cloud albedo and climate. Nature 3266114(326):655–661. https://doi.org/10.1038/326655a0

    Article  Google Scholar 

  106. Lennartz ST, Gauss M, von Hobe M, Marandino CA (2021) Monthly resolved modelled oceanic emissions of carbonyl sulphide and carbon disulphide for the period 2000–2019. Earth Syst Sci Data 13:2095–2110. https://doi.org/10.5194/essd-13-2095-2021

    Article  Google Scholar 

  107. Lennartz ST, von Hobe M, Booge D et al (2019) The influence of dissolved organic matter on the marine production of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the Peruvian upwelling. Ocean Sci 15:1071–1090. https://doi.org/10.5194/os-15-1071-2019

    Article  Google Scholar 

  108. Lennartz ST, Marandino CA, von Hobe M et al (2017) Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide. Atmos Chem Phys 17:385–402. https://doi.org/10.5194/acp-17-385-2017

    Article  Google Scholar 

  109. Lawson SJ, Law CS, Harvey MJ et al (2020) Methanethiol, dimethyl sulfide and acetone over biologically productive waters in the Southwest Pacific Ocean. Atmos Chem Phys 20:3061–3078. https://doi.org/10.5194/ACP-20-3061-2020

    Article  Google Scholar 

  110. Ziska F, Quack B, Abrahamsson K et al (2013) Global Sea-to-air flux climatology for bromoform, dibromomethane and methyl iodide. Atmos Chem Phys 13:8915–8934. https://doi.org/10.5194/ACP-13-8915-2013

    Article  Google Scholar 

  111. Falk S, Sinnhuber BM, Krysztofiak G et al (2017) Brominated VSLS and their influence on ozone under a changing climate. Atmos Chem Phys 17:11313–11329. https://doi.org/10.5194/ACP-17-11313-2017

    Article  Google Scholar 

  112. Gregg T, Lopes R, Fagents S (2021) Planetary volcanism across the solar system. Elsevier. https://doi.org/10.1016/C2017-0-00065-4

    Book  Google Scholar 

  113. Gaillard F, Scaillet B, Arndt N (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478(7368). https://doi.org/10.1038/nature10460

  114. Global Volcanism Program, Volcanoes of the World, v. 4.11.1. Venzke, E (ed.) (2013) Smithsonian Institution, https://doi.org/10.5479/si.GVP.VOTW4-2013, downloaded 20 Aug 2022

  115. Andres RJ, Kasgnoc AD (1998) A time-averaged inventory of subaerial volcanic sulfur emissions. J Geophys Res 103:251–261. https://doi.org/10.1029/98JD02091

    Article  Google Scholar 

  116. Halmer MM, Schmincke HU, Graf HF (2002) The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years. J Volcanol Geoth Res 115:511–528. https://doi.org/10.1016/S0377-0273(01)00318-3

    Article  Google Scholar 

  117. Carn S, Fioletov V, McLinden C, Li C, Krotkov N (2017) A decade of global volcanic SO2 emissions measured from space. Sci Rep-UK 7:44095. https://doi.org/10.1038/srep44095

    Article  Google Scholar 

  118. Fischer TP, Arellano S, Carn S, Aiuppa A, Galle B, Allard P, Lopez T, Shinohara H, Kelly P, Werner C, Cardellini C, Chiodini G (2019) The emissions of CO2 and other volatiles from the world'ssubaerial volcanoes. Nat Sci Rep 9:18716. https://doi.org/10.1038/s41598-019-54682-1

    Article  Google Scholar 

  119. Arellano S, Galle B, Apaza F, Avard G, Barrington C, Bobrowski N, Bucarey C, Burbano V, Burton M, Chacón Z, Chigna G, Clarito CJ, Conde V, Costa F, De Moor M, Delgado-Granados H, Di Muro A, Fernandez D, Garzón G, Gunawan H, Haerani N, Hansteen TH, Hidalgo S, Inguaggiato S, Johansson M, Kern C, Kihlman M, Kowalski P, Masias P, Montalvo F, Möller J, Platt U, Rivera C, Saballos A, Salerno G, Taisne B, Vásconez F, Velásquez G, Vita F, Yalire M (2021) Synoptic analysis of a decade of daily measurements of SO2 emission in the troposphere from volcanoes of the global ground-based network for observation of volcanic and atmospheric change. Earth Syst Sci Data 13:1167–1188. https://doi.org/10.5194/essd-13-1167-2021

    Article  Google Scholar 

  120. Sparks RSJ (2003) Dynamics of magma degassing. Geol Soc Spec Pub 213:5–22. https://doi.org/10.1144/GSL.SP.2003.213.01.02

    Article  Google Scholar 

  121. Edmonds M, Wallace P (2017) Volatiles and Exsolved vapor in volcanic systems. Elements 13(1):29–34. https://doi.org/10.2113/gselements.13.1.29

    Article  Google Scholar 

  122. Oppenheimer C, Fischer T, Scaillet B (2014) Volcanic degassing: process and impact, treatise on geochemistry, vol 4, 2nd edn. Elsevier, pp 111–179. https://doi.org/10.1016/B978-0-08-095975-7.00304-1

    Book  Google Scholar 

  123. Schmidt A, Fristad K, Elkins-Tanton L (eds) (2015) Volcanism and global environmental change. Cambridge University Press. https://doi.org/10.1017/CBO9781107415683

    Book  Google Scholar 

  124. Oppenheimer C (2010) Sulfur: ultraviolet sensing of volcanic sulfur emissions. Elements 6:87–92. https://doi.org/10.2113/gselements.6.2.87

    Article  Google Scholar 

  125. Theys, N., Hedelt, P., De Smedt, I., Lerot, C., Yu, H., Vlietinck, J., Pedergnana, M., Arellano, S., Galle, B., Fernandez, D., Carlito, C., Barrington, C., Taisne, B., Delgado-Granados, H., Loyola, D., and Van Roozendael, M. (2019) Global monitoring of volcanic SO2 degassing with unprecedented resolution from TROPOMI onboard Sentinel-5 Precursor, Sci Rep-UK, 9, 2643, https://doi.org/10.1038/s41598-019-39279-y

  126. Platt U, Lübcke P, Kuhn J, Bobrowski N, Prata F, Burton M, Kern C (2015) Quantitative imaging of volcanic plumes–results, needs, and future trends. J Volcanol Geoth Res 300:7–21. https://doi.org/10.1016/j.jvolgeores.2014.10.006

    Article  Google Scholar 

  127. Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, Lehmann T, Platt U, Arellano S, Hidalgo S (2010) Network for observation of volcanic and atmospheric change (NOVAC): A global network for volcanic gas monitoring -network layout and instrument description. J Geophys Res 115:D05304. https://doi.org/10.1029/2009JD011823

    Article  Google Scholar 

  128. Giggenbach W (1975) A simple method for the collection and analysis of volcanic gas samples. Bull Volcanol 39(1):132–145. https://doi.org/10.1007/BF02596953

    Article  Google Scholar 

  129. Symonds R, Rose W, Bluth G, Gerlach T (1994) Volcanic-gas studies: methods, results, and applications. In: Carroll M, Holloway J (eds) Volatiles in magmas, reviews in mineralogy, vol 30. Mineralogical Society of America, pp 1–66. https://doi.org/10.1515/9781501509674-007

    Chapter  Google Scholar 

  130. Aiuppa A, Federico C, Giudice G, Gurrieri S (2005) Chemical map** of a fumarolic field: La fossa crater, Vulcano Island (Aeolian Islands, Italy). Geophys Res Lett 32(13):L13309. https://doi.org/10.1029/2005gl023207

    Article  Google Scholar 

  131. Shinohara H (2005) A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system. J Volcanol Geotherm Res 143(4):319–333. https://doi.org/10.1016/j.jvolgeores.2004.12.004

    Article  Google Scholar 

  132. Werner C, Fischer TP, Aiuppa A, Edmonds M, Cardellini C, Carn S, Chiodini G, Cottrell E, Burton M, Shinohara H, Allard P (2019) Carbon dioxide emissions from subaerial volcanic regions: two decades in review. In: Orcutt BN, Daniel I, Dasgupta R (eds) Deep carbon: past to present. Cambridge University Press, Cambridge, UK, Whole Earth Carbon. https://doi.org/10.1017/9781108677950

    Chapter  Google Scholar 

  133. Fioletov VE, McLinden CA, Krotkov NA, Moran MD, Yang K (2011) Estimation of SO2 emissions using OMI retrievals. Geophys Res Lett 38:L21811. https://doi.org/10.1029/2011GL049402

    Article  Google Scholar 

  134. Theys N, Campion R, Clarisse L, Brenot H, van Gent J, Dils B, Corradini S, Merucci L, Coheur P-F, Van Roozendael M, Hurtmans D, Clerbaux C, Tait S, Ferrucci F (2013) Volcanic SO2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS. Atmos Chem Phys 13:5945–5968. https://doi.org/10.5194/acp-13-5945-2013

    Article  Google Scholar 

  135. Beirle S, Borger C, Dörner S, Li A, Hu Z, Liu F, Wang Y, Wagner T (2019) Pinpointing nitrogen oxide emissions from space. Sci Adv 5. https://doi.org/10.1126/sciadv.aax9800

  136. Inness A, Ades M, Balis D, Efremenko D, Flemming J, Hedelt P, Koukouli M-E, Loyola D, Ribas R (2022) Evaluating the assimilation of S5P/TROPOMI near real-time SO2 columns and layer height data into the CAMS integrated forecasting system (CY47R1), based on a case study of the 2019 Raikoke eruption. Geosci Model Dev 15:971–994. https://doi.org/10.5194/gmd-15-971-2022

    Article  Google Scholar 

  137. Carn S (2019) Multi-satellite volcanic sulfur dioxide L4 long-term global database V3. Goddard Earth Science Data and Information Services Center (GES DISC), Greenbelt, MD. https://doi.org/10.5067/MEASURES/SO2/DATA404

    Book  Google Scholar 

  138. Fioletov VE, McLinden CA, Griffin D, Abboud I, Krotkov N, Leonard PJT, Li C, Joiner J, Theys N, Carn S (2023) Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements. Earth Syst Sci Data 15:75–93. https://doi.org/10.5194/essd-15-75-2023

    Article  Google Scholar 

  139. Brenot H, Theys N, Clarisse L, van Geffen J, van Gent J, Van Roozendael M, van der A, R., Hurtmans, D., Coheur, P.-F., Clerbaux, C., Valks, P., Hedelt, P., Prata, F., Rasson, O., Sievers, K., and Zehner, C. (2014) Support to aviation control service (SACS): an online service for near-real-time satellite monitoring of volcanic plumes. Nat Hazards Earth Syst Sci 14:1099–1123. https://doi.org/10.5194/nhess-14-1099-2014

    Article  Google Scholar 

  140. Valade S, Ley A, Massimetti F, D’Hondt O, Laiolo M, Coppola D, Loibl D, Hellwich O, Walter TR (2019) Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence: the MOUNTS monitoring system. Remote Sens 11:1528. https://doi.org/10.3390/rs11131528

    Article  Google Scholar 

  141. Miller RL, Tegen I (1998) Climate response to soil dust aerosols. J Clim 11(12):3247–3267

    Article  Google Scholar 

  142. Li L, Mahowald NM, Miller RL, Pérez García-Pando C, Klose M, Hamilton DS, Gonçalves Ageitos M, Ginoux P, Balkanski Y, Green RO, Kalashnikova O, Kok JF, Obiso V, Paynter D, Thompson DR (2021) Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty. Atmos Chem Phys 21:3973–4005. https://doi.org/10.5194/acp-21-3973-2021

    Article  Google Scholar 

  143. Dickerson RR, Kondragunta S, Stenchikov G, Civerolo KL, Doddridge BG, Holben BN (1997) The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science 278(5339):827–830

    Article  Google Scholar 

  144. DeMott PJ, Sassen K, Poellot MR, Baumgardner D, Rogers DC, Brooks SD, Prenni AJ, Kreidenweis SM (2003) African dust aerosols as atmospheric ice nuclei. Geophys Res Lett 30:1732. https://doi.org/10.1029/2003GL017410

    Article  Google Scholar 

  145. Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Nick B, Cao JJ et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308(5718):67–71

    Article  Google Scholar 

  146. Hamilton DS, Perron MM, Bond TC, Bowie AR, Buchholz RR, Guieu C et al (2022) Earth, wind, fire, and pollution: aerosol nutrient sources and impacts on ocean biogeochemistry. Annu Rev Mar Sci 14:303–330

    Article  Google Scholar 

  147. Painter TH, Deems JS, Belnap J, Hamlet AF, Landry CC, Udall B (2010) Response of Colorado River runoff to dust radiative forcing in snow. Proc Natl Acad Sci 107(40):17125–17130

    Article  Google Scholar 

  148. Warren SG (2019) Light-absorbing impurities in snow: a personal and historical account. Front Earth Sci 6:250

    Article  Google Scholar 

  149. Réveillet M, Dumont M, Gascoin S et al (2022) Black carbon and dust alter the response of mountain snow cover under climate change. Nat Commun 13:5279. https://doi.org/10.1038/s41467-022-32501-y

    Article  Google Scholar 

  150. Meng Z, Lu B (2007) Dust events as a risk factor for daily hospitalization for respiratory and cardiovascular diseases in Minqin, China. Atmos Environ 41(33):7048–7058

    Article  Google Scholar 

  151. García-Pando P, Carlos MC, Stanton PJ, Diggle ST, Miller RL, Perlwitz JP, Baldasano JM (2014) Soil dust aerosols and wind as predictors of seasonal meningitis incidence in Niger. Environ Health Perspect 122(7):679–686

    Article  Google Scholar 

  152. Tong DQ, Wang JX, Gill TE, Lei H, Wang B (2017) Intensified dust storm activity and valley fever infection in the southwestern United States. Geophys Res Lett 44(9):4304–4312

    Article  Google Scholar 

  153. Kok JF, Ward DS, Mahowald NM et al (2018) Global and regional importance of the direct dust-climate feedback. Nat Commun 9:241

    Article  Google Scholar 

  154. Evans S, Malyshev S, Ginoux P, Shevliakova E (2019) The impacts of the dust radiative effect on vegetation growth in the Sahel. Glob Biogeochem Cycles 33:1582–1593. https://doi.org/10.1029/2018GB006128

    Article  Google Scholar 

  155. Cook BI, Miller RL, Seager R (2009) Amplification of the north American “dust bowl” drought through human-induced land degradation. Proc Natl Acad Sci 106(13):4997–5001

    Article  Google Scholar 

  156. Huneeus N, Schulz M, Balkanski Y, Griesfeller J, Prospero J, Kinne S, Bauer S, Boucher O, Chin M, Dentener F, Diehl T, Easter R, Fillmore D, Ghan S, Ginoux P, Grini A, Horowitz L, Koch D, Krol MC, Landing W, Liu X, Mahowald N, Miller R, Morcrette J-J, Myhre G, Penner J, Perlwitz J, Stier P, Takemura T, Zender CS (2011) Global dust model intercomparison in AeroCom phase I. Atmos Chem Phys 11:7781–7816. https://doi.org/10.5194/acp-11-7781-2011

    Article  Google Scholar 

  157. Kok JF, Adebiyi AA, Albani S, Balkanski Y, Checa-Garcia R, Chin M, Colarco PR, Hamilton DS, Huang Y, Ito A, Klose M, Leung DM, Li L, Mahowald NM, Miller RL, Obiso V, Pérez García-Pando C, Rocha-Lima A, Wan JS, Whicker CA (2021) Improved representation of the global dust cycle using observational constraints on dust properties and abundance. Atmos Chem Phys 21:8127–8167. https://doi.org/10.5194/acp-21-8127-2021

    Article  Google Scholar 

  158. Prospero JM, Ginoux P, Torres O, Nicholson SE, Gill TE (2002) Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone map** spectrometer (toms) absorbing aerosol product. Rev Geophys 40(1):1002. https://doi.org/10.1029/2000RG000095

    Article  Google Scholar 

  159. Mahowald NM, Luo C (2003) A less dusty future? Geophys Res Lett 30:1903. https://doi.org/10.1029/2003GL017880

    Article  Google Scholar 

  160. Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust emission. Geophys Res Lett 31:L05105. https://doi.org/10.1029/2003GL019216

    Article  Google Scholar 

  161. Ginoux P, Prospero JM, Gill TE, Hsu NC, Zhao M (2012) Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products. Rev Geophys 50:RG3005. https://doi.org/10.1029/2012RG000388

    Article  Google Scholar 

  162. Stanelle T, Bey I, Raddatz T, Reick C, Tegen I (2014) Anthropogenically induced changes in twentieth century mineral dust burden and the associated impact on radiative forcing. J Geophys Res Atmos 119:13,526–13,546. https://doi.org/10.1002/2014JD022062

    Article  Google Scholar 

  163. Yu Y, Ginoux P (2022) Enhanced dust emission following large wildfires due to vegetation disturbance. Nat Geosci 15:878–884. https://doi.org/10.1038/s41561-022-01046-6

    Article  Google Scholar 

  164. Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer, Berlin

    Google Scholar 

  165. Shao Y (2008) Physics and modelling of Wind erosion, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  166. Ginoux P, Chin M, Tegen I, Prospero JM, Holben B, Dubovik O, Lin S-J (2001) Sources and distributions of dust aerosols simulated with the GOCART model. J Geophys Res 106:20255–20273

    Article  Google Scholar 

  167. Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J Geophys Res 100:16415–16430

    Article  Google Scholar 

  168. Shao Y (2004) Simplification of a dust emission scheme and comparison with data. J Geophys Res 109:D10202. https://doi.org/10.1029/2003JD004372

    Article  Google Scholar 

  169. Kok JF, Mahowald NM, Fratini G, Gillies JA, Ishizuka M, Leys JF, Mikami M, Park M-S, Park S-U, Van Pelt RS, Zobeck TM (2014) An improved dust emission model – part 1: model description and comparison against measurements. Atmos Chem Phys 14:13023–13041

    Article  Google Scholar 

  170. Darmenova K, Sokolik IN, Shao Y, Marticorena B, Bergametti G (2009) Development of a physically based dust emission module within the weather research and forecasting (WRF) model: assessment of dust emission parameterizations and input parameters for source regions in central and East Asia. J Geophys Res 114:D14201. https://doi.org/10.1029/2008JD011236

    Article  Google Scholar 

  171. Klose M, Jorba O, Gonçalves Ageitos M, Escribano J, Dawson ML, Obiso V, Di Tomaso E, Basart S, Montané Pinto G, Macchia F, Ginoux P, Guerschman J, Prigent C, Huang Y, Kok JF, Miller RL, Pérez García-Pando C (2021) Mineral dust cycle in the multiscale online nonhydrostatic AtmospheRe CHemistry model (MONARCH) version 2.0, Geosci. Model Dev 14:6403–6444. https://doi.org/10.5194/gmd-14-6403-2021

    Article  Google Scholar 

  172. Shao Y, Ishizuka M, Mikami M, Leys JF (2011) Parameterization of size-resolved dust emission and validation with measurements. J Geophys Res 116:D08203. https://doi.org/10.1029/2010JD014527

    Article  Google Scholar 

  173. Helgren DM, Prospero JM (1987) Wind velocities associated with dust deflation events in the Western Sahara. J Clim Appl Meteorol 26:1147–1151

    Article  Google Scholar 

  174. Gillette DA, Adams J, Endo A, Smith D, Kihl R (1980) Threshold velocities for input of soil particles into the air by desert soils. J Geophys Res 85(C10):5621–5630. https://doi.org/10.1029/JC085iC10p05621

    Article  Google Scholar 

  175. Gillette DA (1988) Threshold friction velocities for dust production for agricultural soils. J Geophys Res 93(D10):12645–12662. https://doi.org/10.1029/JD093iD10p12645

    Article  Google Scholar 

  176. Gillette D (1978) A wind tunnel simulation of the erosion of soil: effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production. Atmos Environ (1967) 12(8):1735–1743

    Article  Google Scholar 

  177. Raupach MR, Gillette DA, Leys JF (1993) The effect of roughness elements on wind erosion threshold. J Geophys Res 98(D2):3023–3029. https://doi.org/10.1029/92JD01922

    Article  Google Scholar 

  178. Draxler RR, Ginoux P, Stein AF (2010) An empirically derived emission algorithm for wind-blown dust. J Geophys Res 115:D16212. https://doi.org/10.1029/2009JD013167

    Article  Google Scholar 

  179. Pu B, Ginoux P, Guo H, Hsu NC, Kimball J, Marticorena B, Malyshev S, Naik V, O'Neill NT, Pérez García-Pando C, Paireau J, Prospero JM, Shevliakova E, Zhao M (2020) Retrieving the global distribution of the threshold of wind erosion from satellite data and implementing it into the geophysical fluid dynamics laboratory land–atmosphere model (GFDL AM4.0/LM4.0). Atmos Chem Phys 20:55–81. https://doi.org/10.5194/acp-20-55-2020

    Article  Google Scholar 

  180. Kurosaki Y, Mikami M (2007) Threshold wind speed for dust emission in East Asia and its seasonal variations. J Geophys Res 112:D17202. https://doi.org/10.1029/2006JD007988

    Article  Google Scholar 

  181. Belly P-Y (1964) Sand movement by wind, technical memorandum no. 1. US Army Coastal Engineering Research Center, Washington D.C.

    Google Scholar 

  182. Fécan F, Marticorena B, Bergametti G (1999) Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann Geophys 17:149–157

    Article  Google Scholar 

  183. Klose M, Shao Y, Li X, Zhang H, Ishizuka M, Mikami M, Leys JF (2014) Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J Geophys Res Atmos 119:10,441–10,457. https://doi.org/10.1002/2014JD021688

    Article  Google Scholar 

  184. Ravi S, Zobeck TM, Over TM, Okin GS, D'Odorico P (2006) On the effect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion. Sedimentology 53:597–609. https://doi.org/10.1111/j.1365-3091.2006.00775.x

    Article  Google Scholar 

  185. Rodriguez-Caballero E, Stanelle T, Egerer S et al (2022) Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nat Geosci 15:458–463. https://doi.org/10.1038/s41561-022-00942-1

    Article  Google Scholar 

  186. Kok JF (2011) A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. P Natl Acad Sci USA:D17204. https://doi.org/10.1073/pnas.1014798108

  187. D'Almeida GA (1987) On the variability of desert aerosol radiative characteristics. J Geophys Res 92:3017–3026. https://doi.org/10.1029/JD092iD03p03017

    Article  Google Scholar 

  188. Soulie A, Granier C, Darras S, Doumbia T, Guevara M, Jalkanen J-P, Keita S, Liousse C, Crippa M, Guizzardi D, Smith S (2023) Global anthropogenic emissions (CAMS-GLOB-ANT) for the Copernicus atmosphere monitoring service simulations of air quality forecasts and reanalyses, to be submitted to Earth. Syst Sci Data

    Google Scholar 

  189. Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, Raymond PA, Dlugokencky EJ, Houweling S, Patra PK, Ciais P, Arora VK, Bastviken D, Bergamaschi P, Blake DR, Brailsford G, Bruhwiler L, Carlson KM, Carrol M, … Zhuang Q (2020) Supplemental data of the Global Carbon Project Methane Budget 2019 (Version 2.0) [Data set]. Global Carbon Project. https://doi.org/10.18160/GCP-CH4-2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Sindelarova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sindelarova, K., Arellano, S., Ginoux, P., Granier, C., Lennartz, S.T., Simpson, D. (2023). Natural Emissions on Global Scale. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2527-8_7-2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2527-8_7-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2527-8

  • Online ISBN: 978-981-15-2527-8

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Natural Emissions on Global Scale
    Published:
    18 July 2023

    DOI: https://doi.org/10.1007/978-981-15-2527-8_7-2

  2. Original

    Emissions on Global Scale
    Published:
    25 June 2023

    DOI: https://doi.org/10.1007/978-981-15-2527-8_7-1

Navigation