Targeting Oxidative Stress in Heart Failure

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants
  • 225 Accesses

Abstract

There has been longstanding recognition that oxidative stress is heightened in the setting of heart failure. Myocardial sources of reactive oxygen species include dysfunctional mitochondria, whereas xanthine oxidase and NADPH oxidases also contribute to myocyte hypertrophy, apoptosis, myocyte slippage, altered calcium handling, and generation of nitrative stress. However, clinical assessment of oxidative stress is challenging due to localization of oxidative processes and analytical challenges. Many standard pharmacologic therapies for heart failure (such as ACE inhibitors or beta-blockers) have anti-oxidative properties, while clinical investigations in drugs targeting specific oxidative stress pathways (e.g., xanthine oxidase inhibitor, coenzyme Q) have been largely inconclusive to date and are still ongoing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abu-Soud HM, Hazen SL (2000) Nitric oxide modulates the catalytic activity of myeloperoxidase. J Biol Chem 275:5425–5430

    CAS  PubMed  Google Scholar 

  • Anker SD, Coats AJ (1996) Metabolic, functional, and haemodynamic staging for CHF? Lancet 348:1530–1531

    CAS  PubMed  Google Scholar 

  • Anker SD, Doehner W, Rauchhaus M et al (2003) Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation 107:1991–1997

    PubMed  Google Scholar 

  • Anker SD, Leyva F, Poole-Wilson PA et al (1997) Relation between serum uric acid and lower limb blood flow in patients with chronic heart failure. Heart 78:39–43

    CAS  PubMed Central  PubMed  Google Scholar 

  • Askari AT, Brennan ML, Zhou X et al (2003) Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction. J Exp Med 197:615–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baandrup U, Florio RA, Roters F et al (1981) Electron microscopic investigation of endomyocardial biopsy samples in hypertrophy and cardiomyopathy. A semiquantitative study in 48 patients. Circulation 63:1289–1298

    CAS  PubMed  Google Scholar 

  • Babior B, Lambeth J, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344

    CAS  PubMed  Google Scholar 

  • Bajcetic M, Kokic Nikolic A, Djukic M et al (2008) Effects of carvedilol on left ventricular function and oxidative stress in infants and children with idiopathic dilated cardiomyopathy: a 12-month, two-center, open-label study. Clin Ther 30:702–714

    CAS  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J et al (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beer M, Seyfarth T, Sandstede J et al (2002) Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol 40:1267–1274

    CAS  PubMed  Google Scholar 

  • Bendall J, Cave A, Heymes C et al (2002) Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296

    CAS  PubMed  Google Scholar 

  • Bergamini C, Cicoira M, Rossi A et al (2009) Oxidative stress and hyperuricaemia: pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. Eur J Heart Fail 11:444–452

    CAS  PubMed  Google Scholar 

  • Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 282:1–4

    CAS  PubMed  Google Scholar 

  • Calcerrada P, Peluffo G, Radi R (2011) Nitric oxide-derived oxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications. Curr Pharm Des 17:3905–3932

    CAS  PubMed  Google Scholar 

  • Calder PC (2009) Polyunsaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie 91:791–795

    CAS  PubMed  Google Scholar 

  • Campbell DL, Stamler JS, Strauss HC (1996) Redox modulation of L-type calcium channels in ferret ventricular myocytes. Dual mechanism regulation by nitric oxide and S-nitrosothiols. J Gen Physiol 108:277–293

    CAS  PubMed  Google Scholar 

  • Cave A, Brewer A, Narayanapanicker A et al (2006) NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8:691–728

    CAS  PubMed  Google Scholar 

  • Cheng TH, Shih NL, Chen SY et al (1999) Reactive oxygen species modulate endothelin-I-induced c-fos gene expression in cardiomyocytes. Cardiovasc Res 41:654–662

    CAS  PubMed  Google Scholar 

  • Cicoira M, Zanolla L, Rossi A et al (2002) Elevated serum uric acid levels are associated with diastolic dysfunction in patients with dilated cardiomyopathy. Am Heart J 143:1107–1111

    PubMed  Google Scholar 

  • Cohen RA, Adachi T (2006) Nitric-oxide-induced vasodilatation: regulation by physiologic s-glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc Med 16:109–114

    CAS  PubMed  Google Scholar 

  • Coleman R, Silbermann M, Gershon D et al (1987) Giant mitochondria in the myocardium of aging and endurance-trained mice. Gerontology 33:34–39

    CAS  PubMed  Google Scholar 

  • Cucoranu I, Clempus R, Dikalova A et al (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907

    CAS  PubMed  Google Scholar 

  • Dai DF, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF, Rabinovitch PS (2011) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58(1):73–82

    Google Scholar 

  • Ekelund UE, Harrison RW, Shokek O et al (1999) Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res 85:437–445

    CAS  PubMed  Google Scholar 

  • Eleuteri E, Di Stefano A, Ricciardolo FL et al (2009) Increased nitrotyrosine plasma levels in relation to systemic markers of inflammation and myeloperoxidase in chronic heart failure. Int J Cardiol 135:386–390

    PubMed  Google Scholar 

  • Ellestad MH (2007) Xanthine oxidase inhibitors the unappreciated treatment for heart failure. Cardiovasc Hematol Disord Drug Targets 7:291–294

    CAS  PubMed  Google Scholar 

  • Elsayed S, Vik H (1993) Purification and N-terminal amino acid sequence of two birch pollen isoallergens (Bet v Ia and Bet Ib). Int Arch Allergy Immunol 100:291

    CAS  PubMed  Google Scholar 

  • Engberding N, Spiekermann S, Schaefer A et al (2004) Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110:2175–2179

    CAS  PubMed  Google Scholar 

  • Force T, Pombo CM, Avruch JA et al (1996) Stress-activated protein kinases in cardiovascular disease. Circ Res 78:947–953

    CAS  PubMed  Google Scholar 

  • Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47:412–426

    CAS  PubMed  Google Scholar 

  • Fry M, Green DE (1980) Cardiolipin requirement by cytochrome oxidase and the catalytic role of phospholipid. Biochem Biophys Res Commun 93:1238–1246

    CAS  PubMed  Google Scholar 

  • Garnier A, Fortin D, Delomenie C et al (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551:491–501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghio S, Scelsi L, Latini R et al (2010) Effects of n-3 polyunsaturated fatty acids and of rosuvastatin on left ventricular function in chronic heart failure: a substudy of GISSI-HF trial. Eur J Heart Fail 12:1345–1353

    CAS  PubMed  Google Scholar 

  • Gilleron M, Marechal X, Montaigne D et al (2009) NADPH oxidases participate to doxorubicin-induced cardiac myocyte apoptosis. Biochem Biophys Res Commun 388:727–731

    CAS  PubMed  Google Scholar 

  • Glembotski CC (2008) The role of the unfolded protein response in the heart. J Mol Cell Cardiol 44:453–459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldhaber JI, Qayyum MS (2000) Oxygen free radicals and excitation-contraction coupling. Antioxid Redox Signal 2:55–64

    CAS  PubMed  Google Scholar 

  • Graham BH, Waymire KG, Cottrell B et al (1997) A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator. Nat Genet 16:226–234

    CAS  PubMed  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    CAS  PubMed  Google Scholar 

  • Griendling KK, Ushio-Fukai M (2000) Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 91:21–27

    CAS  PubMed  Google Scholar 

  • Grieve D, Bryne J, Siva A et al (2006) Involvement of the nicotinamide adenosine dinucleotide phosphate oxidase isoform Nox2 in cardiac contractile dysfunction occurring in response to pressure overload. J Am Coll Cardiol 47:817–826

    CAS  PubMed  Google Scholar 

  • Hanif K, Bid HK, Konwar R (2010) Reinventing the ACE inhibitors: some old and new implications of ACE inhibition. Hypertens Res 33:11–21

    CAS  PubMed  Google Scholar 

  • Hansson A, Hance N, Dufour E et al (2004) A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proc Natl Acad Sci USA 101:3136–3141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hare JM, Mangal B, Brown J et al (2008) Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol 51:2301–2309

    CAS  PubMed  Google Scholar 

  • Hare JM, Stamler JS (2005) NO/redox disequilibrium in the failing heart and cardiovascular system. J Clin Invest 115:509–517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayabuchi Y, Matsuoka S, Akita H et al (1993) Hyperuricaemia in cyanotic congenital heart disease. Eur J Pediatr 152:873–876

    CAS  PubMed  Google Scholar 

  • Hayashi H, Kobara M, Abe M et al (2008a) Aldosterone nongenomically produces NADPH oxidase-dependent reactive oxygen species and induces myocyte apoptosis. Hypertens Res 31:363–375

    CAS  PubMed  Google Scholar 

  • Hayashi K, Kimata H, Obata K et al (2008b) Xanthine oxidase inhibition improves left ventricular dysfunction in dilated cardiomyopathic hamsters. J Card Fail 14:238–244

    CAS  PubMed  Google Scholar 

  • Hess ML, Okabe E, Kontos HA (1981) Proton and free oxygen radical interaction with the calcium transport system of cardiac sarcoplasmic reticulum. J Mol Cell Cardiol 13:767–772

    CAS  PubMed  Google Scholar 

  • Heymes C, Bendall JK, Ratajczak P et al (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41:2164–2171

    CAS  PubMed  Google Scholar 

  • Hingtgen S, Tian X, Yang J et al (2006) Nox2-containing NADPH oxidase and akt activation play a key role in angiotensin II-induced cardiomyocte hypertrophy. Physiol Genomics 26:180–191

    CAS  PubMed  Google Scholar 

  • Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    CAS  PubMed  Google Scholar 

  • Hoch FL (1998) Cardiolipins and mitochondrial proton-selective leakage. J Bioenerg Biomembr 30:511–532

    CAS  PubMed  Google Scholar 

  • Hofer T, Servais S, Seo AY et al (2009) Bioenergetics and permeability transition pore opening in heart subsarcolemmal and interfibrillar mitochondria: effects of aging and lifelong calorie restriction. Mech Ageing Dev 130:297–307

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoppel C, Tandler B, Fujioka H et al (2009) Dynamic organization of mitochondria in human heart and in myocardial disease. Int J Biochem Cell Biol 41:1949–1956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hordijk P (2006) Regulation of NADPH oxidases: the role of rac proteins. Circ Res 98:453–462

    CAS  PubMed  Google Scholar 

  • Hu C, Dandapat A, Sun L et al (2008) Regulation of TGFbeta1-mediated collagen formation by LOX-1: studies based on forced overexpression of TGFbeta1 in wild-type and lox-1 knock-out mouse cardiac fibroblasts. J Biol Chem 283:10226–10231

    CAS  PubMed  Google Scholar 

  • Irani K, **a Y, Zweier JL et al (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649–1652

    CAS  PubMed  Google Scholar 

  • Jarasch ED, Grund C, Bruder G et al (1981) Localization of xanthine oxidase in mammary-gland epithelium and capillary endothelium. Cell 25:67–82

    CAS  PubMed  Google Scholar 

  • Johar S, Cave A, Narayanapanicker A et al (2006) Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J 20:1546–1548

    CAS  PubMed  Google Scholar 

  • Judge S, Jang YM, Smith A et al (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J 19:419–421

    CAS  PubMed  Google Scholar 

  • Jullig M, Hickey AJ, Chai CC et al (2008) Is the failing heart out of fuel or a worn engine running rich? A study of mitochondria in old spontaneously hypertensive rats. Proteomics 8:2556–2572

    CAS  PubMed  Google Scholar 

  • Kandasamy A, Chow A, Ali M et al (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413–423

    CAS  PubMed  Google Scholar 

  • Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keidar S, Kaplan M, Hoffman A et al (1995) Angiotensin II stimulates macrophage-mediated oxidation of low density lipoproteins. Atherosclerosis 115:201–215

    CAS  PubMed  Google Scholar 

  • Keith M, Geranmayegan A, Sole MJ et al (1998) Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 31:1352–1356

    CAS  PubMed  Google Scholar 

  • Khaper N, Kaur K, Li T et al (2003) Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Mol Cell Biochem 251:9–15

    CAS  PubMed  Google Scholar 

  • Kim JA, Gu JL, Natarajan R et al (1995) A leukocyte type of 12-lipoxygenase is expressed in human vascular and mononuclear cells. Evidence for upregulation by angiotensin II. Arterioscler Thromb Vasc Biol 15:942–948

    CAS  PubMed  Google Scholar 

  • Kinugawa S, Tsutsui H, Hayashidani S et al (2000) Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87:392–398

    CAS  PubMed  Google Scholar 

  • Kometiani P, Li J, Gnudi L et al (1998) Multiple signal transduction pathways link Na+/K+−ATPase to growth-related genes in cardiac myocytes. The roles of Ras and mitogen-activated protein kinases. J Biol Chem 273:15249–15256

    CAS  PubMed  Google Scholar 

  • Kwon SH, Pimentel DR, Remondino A et al (2003) H(2)O(2) regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. J Mol Cell Cardiol 35:615–621

    CAS  PubMed  Google Scholar 

  • La Rocca G, Di Stefano A, Eleuteri E et al (2009) Oxidative stress induces myeloperoxidase expression in endocardial endothelial cells from patients with chronic heart failure. Basic Res Cardiol 104:307–320

    CAS  PubMed  Google Scholar 

  • Lai L, Leone TC, Zechner C et al (2008) Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlap** programs required for perinatal maturation of the heart. Genes Dev 22:1948–1961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambeth J (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189

    CAS  PubMed  Google Scholar 

  • Laursen JB, Rajagopalan S, Galis Z et al (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95:588–593

    CAS  PubMed  Google Scholar 

  • Lavie CJ, Milani RV, Mehra MR et al (2009) Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol 54:585–594

    CAS  PubMed  Google Scholar 

  • Lee BE, Toledo AH, Anaya-Prado R et al (2009) Allopurinol, xanthine oxidase, and cardiac ischemia. J Investig Med 57:902–909

    CAS  PubMed  Google Scholar 

  • Lee CI, Liu X, Zweier JL (2000) Regulation of xanthine oxidase by nitric oxide and peroxynitrite. J Biol Chem 275:9369–9376

    CAS  PubMed  Google Scholar 

  • Lehman JJ, Barger PM, Kovacs A et al (2000) Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest 106:847–856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lesnefsky EJ, Chen Q, Moghaddas S et al (2004) Blockade of electron transport during ischemia protects cardiac mitochondria. J Biol Chem 279:47961–47967

    CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Gudz TI, Migita CT et al (2001) Ischemic injury to mitochondrial electron transport in the aging heart: damage to the iron-sulfur protein subunit of electron transport complex III. Arch Biochem Biophys 385:117–128

    CAS  PubMed  Google Scholar 

  • Lesnefsky EJ, Tandler B, Ye J et al (1997) Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. Am J Physiol 273:H1544–H1554

    CAS  PubMed  Google Scholar 

  • Leyva F, Anker S, Swan JW et al (1997) Serum uric acid as an index of impaired oxidative metabolism in chronic heart failure. Eur Heart J 18:858–865

    CAS  PubMed  Google Scholar 

  • Li J, Gall N, Grieve D et al (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484

    CAS  PubMed  Google Scholar 

  • Li Y, Huang TT, Carlson EJ et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381

    CAS  PubMed  Google Scholar 

  • Lipinski MJ, Cauthen CA, Biondi-Zoccai GG et al (2009) Meta-analysis of randomized controlled trials of statins versus placebo in patients with heart failure. Am J Cardiol 104:1708–1716

    CAS  PubMed  Google Scholar 

  • Lonn E, Yusuf S, Dzavik V et al (2001) Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation 103:919–925

    CAS  PubMed  Google Scholar 

  • Lonn E, Yusuf S, Hoogwerf B, Pogue J, Yi Q, Zinman B, Bosch J, Dagenais G, Mann JF, Gerstein HC (2002) HOPE Study; MICRO-HOPE Study. Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care 25(11):1919–1927

    CAS  PubMed  Google Scholar 

  • Marchioli R, Levantesi G, Macchia A et al (2006) Vitamin E increases the risk of develo** heart failure after myocardial infarction: results from the GISSI-prevenzione trial. J Cardiovasc Med (Hagerstown) 7:347–350

    Google Scholar 

  • Martyn K, Frederick L, Von Loehneysen K et al (2006) Functional analysis of Nox4 revelas unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82

    CAS  PubMed  Google Scholar 

  • Maxwell AJ, Bruinsma KA (2001) Uric acid is closely linked to vascular nitric oxide activity. Evidence for mechanism of association with cardiovascular disease. J Am Coll Cardiol 38:1850–1858

    CAS  PubMed  Google Scholar 

  • Mcmurray J, Chopra M, Abdullah I et al (1993) Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 14:1493–1498

    CAS  PubMed  Google Scholar 

  • Meerson FZ, Kagan VE, Kozlov Yu P et al (1982) The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart. Basic Res Cardiol 77:465–485

    CAS  PubMed  Google Scholar 

  • Mingorance C, Rodriguez-Rodriguez R, Justo ML et al (2011) Pharmacological effects and clinical applications of propionyl-L-carnitine. Nutr Rev 69:279–290

    PubMed  Google Scholar 

  • Moertl D, Hammer A, Steiner S et al (2011) Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study. Am Heart J 161(915):e911–e919

    Google Scholar 

  • Nagatomo Y, Yoshikawa T, Kohno T et al (2007) Effects of beta-blocker therapy on high sensitivity c-reactive protein, oxidative stress, and cardiac function in patients with congestive heart failure. J Card Fail 13:365–371

    CAS  PubMed  Google Scholar 

  • Nakagami H, Takemoto M, Liao J (2003) NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35:851–859

    CAS  PubMed  Google Scholar 

  • Nakamura K, Fushimi K, Kouchi H et al (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799

    CAS  PubMed  Google Scholar 

  • Nakamura R, Egashira K, Machida Y et al (2002) Probucol attenuates left ventricular dysfunction and remodeling in tachycardia-induced heart failure: roles of oxidative stress and inflammation. Circulation 106:362–367

    CAS  PubMed  Google Scholar 

  • Napoli C, Cicala C, D’armiento FP et al (1999) Beneficial effects of ACE-inhibition with zofenopril on plaque formation and low-density lipoprotein oxidation in Watanabe heritable hyperlipidemic rabbits. Gen Pharmacol 33:467–477

    CAS  PubMed  Google Scholar 

  • Nasr G, Maurice C (2010) Allopurinol and global left myocardial function in heart failure patients. J Cardiovasc Dis Res 1:191–195

    PubMed Central  PubMed  Google Scholar 

  • Neubauer S, Horn M, Cramer M et al (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    CAS  PubMed  Google Scholar 

  • Nicholls SJ, Hazen SL (2005) Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25:1102–1111

    CAS  PubMed  Google Scholar 

  • Nodari S, Triggiani M, Campia U et al (2011) Effects of n-3 polyunsaturated fatty acids on left ventricular function and functional capacity in patients with dilated cardiomyopathy. J Am Coll Cardiol 57:870–879

    CAS  PubMed  Google Scholar 

  • Okada K, Minamino T, Tsukamoto Y et al (2004) Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110:705–712

    PubMed  Google Scholar 

  • Pacher P, Schulz R, Liaudet L et al (2005) Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 26:302–310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Palmer JW, Tandler B, Hoppel CL (1985) Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. Arch Biochem Biophys 236:691–702

    CAS  PubMed  Google Scholar 

  • Palmer JW, Tandler B, Hoppel CL (1986) Heterogeneous response of subsarcolemmal heart mitochondria to calcium. Am J Physiol 250:H741–H748

    CAS  PubMed  Google Scholar 

  • Parish RC, Evans JD (2008) Inflammation in chronic heart failure. Ann Pharmacother 42:1002–1016

    CAS  PubMed  Google Scholar 

  • Peluffo G, Radi R (2007) Biochemistry of protein tyrosine nitration in cardiovascular pathology. Cardiovasc Res 75:291–302

    CAS  PubMed  Google Scholar 

  • Prasad K, Kalra J, Chan WP et al (1989) Effect of oxygen free radicals on cardiovascular function at organ and cellular levels. Am Heart J 117:1196–1202

    CAS  PubMed  Google Scholar 

  • Puccio H, Simon D, Cossee M et al (2001) Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat Genet 27:181–186

    CAS  PubMed  Google Scholar 

  • Qin F, Patel R, Yan C et al (2006) NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: effects of apocynin. Free Radic Biol Med 40:236–246

    CAS  PubMed  Google Scholar 

  • Radovanovic S, Savic-Radojevic A, Pljesa-Ercegovac M et al (2012) Markers of oxidative damage and antioxidant enzyme activities as predictors of morbidity and mortality in patients with chronic heart failure. J Card Fail 18:493–501

    CAS  PubMed  Google Scholar 

  • Reed JC (1997) Cytochrome c: can’t live with it–can’t live without it. Cell 91:559–562

    CAS  PubMed  Google Scholar 

  • Reed JC, Jurgensmeier JM, Matsuyama S (1998) Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1366:127–137

    CAS  PubMed  Google Scholar 

  • Reinartz M, Ding Z, Flogel U et al (2008) Nitrosative stress leads to protein glutathiolation, increased s-nitrosation, and up-regulation of peroxiredoxins in the heart. J Biol Chem 283:17440–17449

    CAS  PubMed  Google Scholar 

  • Riva A, Tandler B, Loffredo F et al (2005) Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol 289:H868–H872

    CAS  Google Scholar 

  • Rosca MG, Hoppel CL (2010) Mitochondria in heart failure. Cardiovasc Res 88:40–50

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosca MG, Vazquez EJ, Kerner J et al (2008) Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res 80:30–39

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudolph V, Rudolph TK, Hennings JC et al (2007) Activation of polymorphonuclear neutrophils in patients with impaired left ventricular function. Free Radic Biol Med 43:1189–1196

    CAS  PubMed  Google Scholar 

  • Sabri A, Hughie HH, Lucchesi PA (2003) Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal 5:731–740

    CAS  PubMed  Google Scholar 

  • Sam F, Kerstetter DL, Pimental DR et al (2005) Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Fail 11:473–480

    CAS  PubMed  Google Scholar 

  • Satoh M, Ogita H, Takeshita K et al (2006) Requirement of Rac1 in the development of cardiac hypertrophy. Proc Natl Acad Sci USA 103:7432–7437

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saugstad OD (1996) Role of xanthine oxidase and its inhibitor in hypoxia: reoxygenation injury. Pediatrics 98:103–107

    CAS  PubMed  Google Scholar 

  • Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheidegger KJ, Butler S, Witztum JL (1997) Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway. J Biol Chem 272:21609–21615

    CAS  PubMed  Google Scholar 

  • Schramm A, Matusik P, Osmenda G et al (2012) Targeting NADPH oxidases in vascular pharmacology. Vascul Pharmacol 56:216–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sebastiani M, Giordano C, Nediani C et al (2007) Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 50:1362–1369

    CAS  PubMed  Google Scholar 

  • Sesso HD, Buring JE, Christen WG et al (2008) Vitamins E and C in the prevention of cardiovascular disease in men: the physicians’ Health Study II randomized controlled trial. JAMA 300:2123–2133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharov VG, Goussev A, Lesch M et al (1998) Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 30:1757–1762

    CAS  PubMed  Google Scholar 

  • Shishehbor MH, Aviles RJ, Brennan ML et al (2003) Association of nitrotyrosine levels with cardiovascular disease and modulation by statin therapy. JAMA 289:1675–1680

    CAS  PubMed  Google Scholar 

  • Shiva S, Wang X, Ringwood LA et al (2006) Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2:486–493

    CAS  PubMed  Google Scholar 

  • Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 280:C53–C60

    CAS  PubMed  Google Scholar 

  • Siwik DA, Tzortzis JD, Pimental DR et al (1999) Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ Res 85:147–153

    CAS  PubMed  Google Scholar 

  • Sluiter W, Pietersma A, Lamers JM et al (1993) Leukocyte adhesion molecules on the vascular endothelium: their role in the pathogenesis of cardiovascular disease and the mechanisms underlying their expression. J Cardiovasc Pharmacol 22(Suppl 4):S37–S44

    CAS  PubMed  Google Scholar 

  • Spallarossa P, Altieri P, Garibaldi S et al (2006) Matrix metalloproteinase-2 and −9 are induced differently by doxorubicin in H9c2 cells: the role of MAP kinases and NAD(P)H oxidase. Cardiovasc Res 69:736–745

    CAS  PubMed  Google Scholar 

  • Spinale FG, Coker ML, Bond BR et al (2000) Myocardial matrix degradation and metalloproteinase activation in the failing heart: a potential therapeutic target. Cardiovasc Res 46:225–238

    CAS  PubMed  Google Scholar 

  • Sumimoto H, Miyano K, Takeya R (2005) Molecular composition and regulation of the nox family NAD(P)H oxidases. Biochem Biophys Res Commun 338:677–686

    CAS  PubMed  Google Scholar 

  • Sun J, Yamaguchi N, Xu L et al (2008) Regulation of the cardiac muscle ryanodine receptor by O(2) tension and S-nitrosoglutathione. Biochemistry 47:13985–13990

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang WH, Brennan ML, Philip K et al (2006) Plasma myeloperoxidase levels in patients with chronic heart failure. Am J Cardiol 98:796–799

    CAS  PubMed  Google Scholar 

  • Tang WH, Katz R, Brennan ML et al (2009) Usefulness of myeloperoxidase levels in healthy elderly subjects to predict risk of develo** heart failure. Am J Cardiol 103:1269–1274

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang WH, Samara MA (2011) Polyunsaturated fatty acids in heart failure: should we give more and give earlier? J Am Coll Cardiol 57:880–883

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang WH, Tong W, Troughton RW et al (2007) Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. J Am Coll Cardiol 49:2364–2370

    CAS  PubMed  Google Scholar 

  • Tang WH, Wu Y, Mann S et al (2011) Diminished antioxidant activity of high-density lipoprotein-associated proteins in systolic heart failure. Circ Heart Fail 4:59–64

    CAS  PubMed  Google Scholar 

  • Tavazzi L, Maggioni AP, Marchioli R et al (2008) Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet 372:1223–1230

    PubMed  Google Scholar 

  • Tousoulis D, Papageorgiou N, Briasoulis A et al (2012) Conflicting effects of nitric oxide and oxidative stress in chronic heart failure: potential therapeutic strategies. Heart Fail Rev 17:65–79

    CAS  PubMed  Google Scholar 

  • Turner NA, **a F, Azhar G et al (1998) Oxidative stress induces DNA fragmentation and caspase activation via the c-Jun NH2-terminal kinase pathway in H9c2 cardiac muscle cells. J Mol Cell Cardiol 30:1789–1801

    CAS  PubMed  Google Scholar 

  • Ungvari Z, Gupte SA, Recchia FA et al (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3:221–229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanderheyden M, Bartunek J, Knaapen M et al (2004) Hemodynamic effects of inducible nitric oxide synthase and nitrotyrosine generation in heart failure. J Heart Lung Transplant 23:723–728

    PubMed  Google Scholar 

  • Von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941

    Google Scholar 

  • Vonck J, Schafer E (2009) Supramolecular organization of protein complexes in the mitochondrial inner membrane. Biochim Biophys Acta 1793:117–124

    CAS  PubMed  Google Scholar 

  • Wang H, Yang YJ, Qian HY et al (2012) Resveratrol in cardiovascular disease: what is known from current research? Heart Fail Rev 17:437–448

    CAS  PubMed  Google Scholar 

  • Wang S, Fu C, Wang H et al (2007) Polymorphisms of the peroxisome proliferator-activated receptor-gamma coactivator-1alpha gene are associated with hypertrophic cardiomyopathy and not with hypertension hypertrophy. Clin Chem Lab Med 45:962–967

    CAS  PubMed  Google Scholar 

  • White M, Ducharme A, Ibrahim R et al (2006) Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci (Lond) 110:483–489

    CAS  Google Scholar 

  • Wiemer G, Linz W, Hatrik S et al (1997) Angiotensin-converting enzyme inhibition alters nitric oxide and superoxide release in normotensive and hypertensive rats. Hypertension 30:1183–1190

    CAS  PubMed  Google Scholar 

  • Witte KK, Clark AL (2009) Marine polyunsaturated fatty acids in heart failure. Are the theoretical benefits matched by the clinical data? Pol Arch Med Wewn 119:162–169

    CAS  PubMed  Google Scholar 

  • Wittig I, Carrozzo R, Santorelli FM et al (2006) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757:1066–1072

    CAS  PubMed  Google Scholar 

  • Woolliscroft JO, Colfer H, Fox IH (1982) Hyperuricemia in acute illness: a poor prognostic sign. Am J Med 72:58–62

    CAS  PubMed  Google Scholar 

  • **ao L, Pimentel D, Singh K et al (2002) Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol 282:C926–C934

    CAS  PubMed  Google Scholar 

  • Xu L, Eu JP, Meissner G et al (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    CAS  PubMed  Google Scholar 

  • Yucel D, Aydogdu S, Cehreli S et al (1998) Increased oxidative stress in dilated cardiomyopathic heart failure. Clin Chem 44:148–154

    CAS  PubMed  Google Scholar 

  • Yue TL, Ma XL, Gu JL et al (1998) Carvedilol inhibits activation of stress-activated protein kinase and reduces reperfusion injury in perfused rabbit heart. Eur J Pharmacol 345:61–65

    CAS  PubMed  Google Scholar 

  • Yue TL, Mckenna PJ, Ruffolo RR Jr et al (1992) Carvedilol, a new beta-adrenoceptor antagonist and vasodilator antihypertensive drug, inhibits superoxide release from human neutrophils. Eur J Pharmacol 214:277–280

    CAS  PubMed  Google Scholar 

  • Yusuf S, Dagenais G, Pogue J et al (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:154–160

    CAS  PubMed  Google Scholar 

  • Zak R, Rabinowitz M, Rajamanickam C et al (1980) Mitochondrial proliferation in cardiac hypertrophy. Basic Res Cardiol 75:171–178

    CAS  PubMed  Google Scholar 

  • Zhang M, Brewer AC, Schroder K et al (2010) NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci USA 107:18121–18126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Mclaughlin D, Robinson E et al (2010) Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with doxorubicin chemotherapy. Cancer Res 70:9287–9297

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

Dr. Tang is supported by National Institutes of Health grants R01HL103931, P20HL113452, P01HL098055, R01HL103866, and the Cleveland Clinic Clinical Research Unit of the Case Western Reserve University CTSA (UL1TR 000439). He has previously received research grant support from Abbott Laboratories, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Li, J.W.Y., Tang, W.H.W. (2014). Targeting Oxidative Stress in Heart Failure. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_184

Download citation

Publish with us

Policies and ethics

Navigation