Oxidative Stress in Cardiac Repair and Remodeling: Molecular Pathways and Therapeutic Strategies

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1909 Accesses

Abstract

Cardiac remodeling occurs in a variety of heart diseases, contributing to ventricular dysfunction. Following myocardial infarction (MI), cardiac repair and remodeling appear in both infarcted and non-infarcted myocardium. Factors regulating cardiac repair/remodeling at different stages following MI are under investigation. There is growing recognition and experimental evidence that oxidative stress mediated by reactive oxygen species (ROS) plays a role in the pathogeneses of myocardial repair/remodeling in various cardiac diseases. After acute MI, oxidative stress is developed in both infarcted and non-infarcted myocardium. Accumulating evidence has demonstrated that ROS participates in several aspects of cardiac repair/remodeling following infarction that includes cardiomyocyte apoptosis, inflammatory/fibrogenic responses, hypertrophy, and angiogenesis. The exact pathways on ROS-mediated myocardial remodeling are under investigation. The therapeutic potential of oxidative stress-directed drugs in myocardial remodeling following infarction has not been fully realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olivetti G, Capasso JM, Meggs LG et al (1991) Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ Res 68:856–869

    PubMed  CAS  Google Scholar 

  2. Jugdutt BI (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108:1395–1403

    PubMed  Google Scholar 

  3. Ertl G, Frantz S (2005) Healing after myocardial infarction. Cardiovasc Res 66:22–32

    PubMed  CAS  Google Scholar 

  4. Anversa P, Li P, Zhang X (1993) Ischemic myocardial injury and ventricular remodeling. Cardiovasc Res 27:145–157

    PubMed  CAS  Google Scholar 

  5. Francis GS, Mcdonald K, Chu G, Cohn JN (1995) Pathophysiologic aspects of end-stage heart failure. Am J Cardiol 75:11A–16A

    PubMed  CAS  Google Scholar 

  6. Weber KT (1997) Extracellular matrix remodeling in heart failure. Circulation 96:4065–4082

    PubMed  CAS  Google Scholar 

  7. Hill MF, Singal PK (1996) Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. Am J Pathol 148:291–300

    PubMed  CAS  Google Scholar 

  8. Fukui T, Yoshiyama M, Hanatani A et al (2001) Expression of p22-phox an dgp91-phox, essential components of NADPH oxidase, increases after myocardial infarction. Biochem Biophys Res Commun 281:1200–1206

    PubMed  CAS  Google Scholar 

  9. Lu L, Quinn MT, Sun Y (2004) Oxidative stress in the infarcted heart: role of de novo angiotensin II production. Biochem Biophys Res Commun 325:943–951

    PubMed  CAS  Google Scholar 

  10. Usal A, Acarturk E, Yuregir GT et al (1996) Decreased glutathione levels in acute myocardial infarction. Jpn Heart J 37:177–182

    PubMed  CAS  Google Scholar 

  11. Khaper N, Kaur K, Li T et al (2003) Antioxidant enzyme gene expression in congestive heart failure following myocardial infarction. Mol Cell Biochem 251:9–15

    PubMed  CAS  Google Scholar 

  12. Hare JM (2001) Oxidative stress and apoptosis in heart failure progression. Circ Res 89:198–201

    PubMed  CAS  Google Scholar 

  13. Poli G, Parola M (1997) Oxidative damage and fibrogenesis. Free Radic Biol Med 22:287–305

    PubMed  CAS  Google Scholar 

  14. Gorlach A, Kietzmann T, Hess J (2002) Redox signaling through NADPH oxidases: involvement in vascular proliferation and coagulation. Ann N Y Acad Sci 973:505–507

    PubMed  Google Scholar 

  15. Zhao W, Zhao T, Chen Y et al (2009) Reactive oxygen species promote angiogenesis in the infarcted rat heart. Int J Exp Pathol 90:621–629

    PubMed  CAS  Google Scholar 

  16. Nakagami H, Takemoto M, Liao JK (2003) NADPH oxidase-derived superoxide anion mediates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 35:851–859

    PubMed  CAS  Google Scholar 

  17. Sia YT, Parker TG et al (2002) Improved post-myocardial infarction survival with probucol in rats: effects on left ventricular function, morphology, cardiac oxidative stress and cytokine expression. J Am Coll Cardiol 39:148–156

    PubMed  CAS  Google Scholar 

  18. Sia YT, Lapointe N, Parker T et al (2002) Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation 105:2549–2555

    PubMed  CAS  Google Scholar 

  19. Kinugawa S, Tsutsui H, Hayashidani S et al (2000) Treatment with dimethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87:392–398

    PubMed  CAS  Google Scholar 

  20. Sorescu D, Griendling K (2002) Reactive oxygen species, mitochondria, and NADPH oxidases in the development and progression of heart failure. Congest Heart Fail 8:132–140

    PubMed  CAS  Google Scholar 

  21. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–52

    PubMed  CAS  Google Scholar 

  22. Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14S–22S

    PubMed  CAS  Google Scholar 

  23. Finkel T (1999) Signal transduction by reactive oxygen species in non-phagocytic cells. J Leukoc Biol 65:337–340

    PubMed  CAS  Google Scholar 

  24. Dhalla AK, Singal PK (1994) Antioxidant changes in hypertrophied and failing guinea pig heart. Am J Physiol 266:H1280–H1285

    PubMed  CAS  Google Scholar 

  25. Young IS, Woodside JV (2001) Antioxidants in health and disease. J Clin Pathol 54:176–186

    PubMed  CAS  Google Scholar 

  26. Vaziri ND, Lin C, Farmand F, Sindhu K (2003) Superoxide dismutase, catalase, glutathione peroxidase and NADPH oxidase in lead-induced hypertension. Kidney Int 63:186–194

    PubMed  CAS  Google Scholar 

  27. Gasparetto C, Malinverno A, Culacciati D et al (2005) Antioxidant vitamins reduce oxidative stress and ventricular remodeling in patients with acute myocardial infarction. Int J Immunopathol Pharmacol 18:487–496

    PubMed  CAS  Google Scholar 

  28. Hill MF, Singal PK (1997) Right and left myocardial antioxidant responses during heart failure subsequent to myocardial infarction. Circulation 96:2414–2420

    PubMed  CAS  Google Scholar 

  29. Li L, Quinn MT, Sun Y (2004) Oxidative stress in the infarcted heart: role of de novo angiotensin II production. Biochem Biophys Res Commun 325:943–951

    Google Scholar 

  30. Mohazzab-H KM, Kaminski PM, Wolin MS (1997) Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase. Circulation 15:614–620

    Google Scholar 

  31. Grieve DJ, Byrne JA, Cave AC, Shah AM (2004) Role of oxidative stress in cardiac remodeling after myocardial infarction. Heart Lung Circ 13:132–138

    PubMed  CAS  Google Scholar 

  32. Anversa P, Cheng W, Liu Y et al (1998) Apoptosis and myocardial infarction. Basic Res Cardiol 93:8–12

    PubMed  Google Scholar 

  33. Cheng W, Kajstura J, Nitahara JA et al (1996) Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res 226:316–327

    PubMed  CAS  Google Scholar 

  34. Kajstura J, Cheng W, Reiss K et al (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 74:86–107

    PubMed  CAS  Google Scholar 

  35. Hare JM (2001) Oxidative stress and apoptosis in heart failure progression. Cir Res 89:198–201

    CAS  Google Scholar 

  36. Li WG, Coppey L, Weiss RM, Oskarsson HJ (2001) Antioxidant therapy attenuates JNK activation and apoptosis in the remote noninfarcted myocardium after large myocardial infarction. Biochem Biophys Res Commun 280:353–357

    PubMed  CAS  Google Scholar 

  37. Kumar D, Kirshenbaum LA, Li T et al (2001) Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. Antioxid Redox Signal 3:135–145

    PubMed  CAS  Google Scholar 

  38. Pagliara P, Carla EC, Caforio S et al (2003) Kupffer cells promote lead nitrate-induced hepatocyte apoptosis via oxidative stress. Comp Hepatol 2:8–16

    PubMed  Google Scholar 

  39. von Harsdorf R, Li PF, Dietz R (1998) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941

    Google Scholar 

  40. Li PF, Dietz R, von Harsdorf R (1999) Superoxide induces apoptosis in cardiomyocytes, but proliferation and expression of transforming growth factor-beta1 in cardiac fibroblasts. FEBS Lett 448:206–210

    PubMed  CAS  Google Scholar 

  41. Gottlieb RA, Burleson KO, Kloner RA et al (1994) Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628

    PubMed  CAS  Google Scholar 

  42. Itoh G, Tamura J, Suzuki M et al (1995) DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146:1325–1331

    PubMed  CAS  Google Scholar 

  43. Kajstura J, Zhang X, Liu Y et al (1995) The cellular basis of pacing-induced dilated cardiomyopathy: myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation 92:2306–2317

    PubMed  CAS  Google Scholar 

  44. Liu Y, Cigola E, Cheng W et al (1995) Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 73:771–787

    PubMed  CAS  Google Scholar 

  45. Sharov VG, Sabbah HN, Shimoyama H et al (1996) Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 148:141–149

    PubMed  CAS  Google Scholar 

  46. Teiger E, Than VD, Richard L et al (1996) Apoptosis in pressure overload-induced heart hypertrophy in the rat. J Clin Invest 97:2891–2897

    PubMed  CAS  Google Scholar 

  47. Zeng H, Liu X, Zhao H (2003) Effects of carvedilol on cardiomyocyte apoptosis and gene expression in vivo after ischemia-reperfusion in rats. J Huazhong Univ Sci Technolog Med Sci 23:127–130

    PubMed  CAS  Google Scholar 

  48. Kumar D, Jugdutt BI (2003) Apoptosis and oxidants in the heart. J Lab Clin Med 142:288–297

    PubMed  CAS  Google Scholar 

  49. Zhao W, Lu L, Chen SS, Sun Y (2004) Temporal and spatial characteristics of apoptosis in the infarcted rat heart. Biochem Biophys Res Commun 325:605–611

    PubMed  CAS  Google Scholar 

  50. Hockenbery DM, Oltvai ZN, Yin XM et al (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251

    PubMed  CAS  Google Scholar 

  51. Cesselli D, Jakoniuk I, Barlucchi L et al (2001) Oxidative stress-mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 89:279–286

    PubMed  CAS  Google Scholar 

  52. Kubota T, Miyagishima M, Frye CS et al (2001) Overexpression of tumor necrosis factor- alpha activates both anti- and pro-apoptotic pathways in the myocardium. J Mol Cell Cardiol 33:1331–1344

    PubMed  CAS  Google Scholar 

  53. Haunstetter A, Izumo S (1998) Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1129

    PubMed  CAS  Google Scholar 

  54. Song W, Lu X, Feng Q (2000) Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovasc Res 45:595–602

    PubMed  CAS  Google Scholar 

  55. Almeida A, Bolanos JP (2001) A transient inhibition of mitochondrial ATP synthesis by nitric oxide synthase activation triggered apoptosis in primary cortical neurons. J Neurochem 77:676–690

    PubMed  CAS  Google Scholar 

  56. Dobashi K, Pahan K, Chahal A, Singh I (1997) Modulation of endogenous antioxidant enzymes by nitric oxide in rat C6 glial cells. J Neurochem 68:1896–1903

    PubMed  CAS  Google Scholar 

  57. Marfella R, Di Filippo C, Esposito K et al (2004) Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes 53:454–462

    PubMed  CAS  Google Scholar 

  58. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7–10

    PubMed  CAS  Google Scholar 

  59. Wollert KC, Drexler H (2001) The role of interleukin-6 in the failing heart. Heart Fail Rev 6:95–103

    PubMed  CAS  Google Scholar 

  60. Kabe Y, Ando K, Hirao S et al (2005) Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7:395–403

    PubMed  CAS  Google Scholar 

  61. Lu L, Chen SS, Zhang JQ et al (2004) Activation of nuclear factor-kappaB and its proinflammatory mediator cascade in the infarcted rat heart. Biochem Biophys Res Commun 321:879–885

    PubMed  CAS  Google Scholar 

  62. Nichols TC (2004) NF-kappaB and reperfusion injury. Drug News Perspect 17:99–104

    PubMed  CAS  Google Scholar 

  63. Schoonbroodt S, Piette J (2000) Oxidative stress interference with the nuclear factor-kappa B activation pathways. Biochem Pharmacol 15:1075–1083

    Google Scholar 

  64. Jacobs M, Staufenberger S, Gergs U et al (1999) Tumor necrosis factor-alpha at acute myocardial infarction in rats and effects on cardiac fibroblasts. J Mol Cell Cardiol 31:1949–1959

    PubMed  CAS  Google Scholar 

  65. Ceconi C, Curello S, Bachetti T et al (1998) Tumor necrosis factor in congestive heart failure: a mechanism of disease for the new millennium? Prog Cardiovasc Dis 41:25–30

    PubMed  CAS  Google Scholar 

  66. Nakamura R, Egashira K, Machida Y et al (2002) Probucol attenuates left ventricular dysfunction and remodeling in tachycardia-induced heart failure: roles of oxidative stress and inflammation. Circulation 106:362–367

    PubMed  CAS  Google Scholar 

  67. Sahna E, Acet A, Ozer MK, Olmez E (2002) Myocardial ischemia-reperfusion in rats: reduction of infarct size by either supplemental physiological or pharmacological doses of melatonin. J Pineal Res 33:234–238

    PubMed  CAS  Google Scholar 

  68. Kim CH, Choi H, Chun YS et al (2002) The protective effect of resveratrols on ischaemia-reperfusion injuries of rat hearts is correlated with antioxidant efficacy. Br J Pharmacol 135:1627–1633

    Google Scholar 

  69. Tsukamoto H (1993) Oxidative stress, antioxidants, and alcoholic liver fibrogenesis. Alcohol 10:465–467

    PubMed  CAS  Google Scholar 

  70. Mastruzzo C, Crimi N, Vancheri C (2002) Role of oxidative stress in pulmonary fibrosis. Monaldi Arch Chest Dis 57:173–176

    PubMed  CAS  Google Scholar 

  71. Sun Y, Cleutjens JP, Diaz-Arias AA, Weber KT (1994) Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 28:1423–1432

    PubMed  CAS  Google Scholar 

  72. Desmouliere A, Gabbiani G (1996) The role of the myofibroblast in wound healing and fibrocontractive diseases. In: Richard AF (ed) The molecular and cellular biology of wound repair. Plenum Press, New York, NY, pp 391–423

    Google Scholar 

  73. Sun Y, Weber KT (1996) Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat. J Mol Cell Cardiol 28:851–858

    PubMed  CAS  Google Scholar 

  74. Sun Y, Zhang JQ, Zhang J, Ramires FJ (1998) Angiotensin II, transforming growth factor-beta1 and repair in the infarcted heart. J Mol Cell Cardiol 30:1559–1569

    PubMed  CAS  Google Scholar 

  75. Lee KS, Buck M, Houglum K, Chojkier M (1995) Activation of hepatic stellate cells by TGF alpha and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest 96:2461–2468

    PubMed  CAS  Google Scholar 

  76. Miyazaki T, Karube M, Matsuzaki Y et al (2005) Taurine inhibits oxidative damage and prevents fibrosis in carbon tetrachloride-induced hepatic fibrosis. J Hepatol 43:117–125

    PubMed  CAS  Google Scholar 

  77. Murrell AC, Francis JO, Bromley L (1993) Modulation of fibroblast proliferation by oxygen free radicals. Biochem J 265:659–665

    Google Scholar 

  78. Frantz S, Brandes RP, Hu K et al (2005) Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91phox. Basic Res Cardiol 100:1–6

    Google Scholar 

  79. Rohde LE, Ducharme A, Arroyo LH et al (1999) Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99:3063–3070

    PubMed  CAS  Google Scholar 

  80. Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 280:C53–C60

    PubMed  CAS  Google Scholar 

  81. Shiomi T, Tsutsui H, Matsusaka H et al (2004) Overexpression of glutathione peroxidase prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 109:544–549

    PubMed  CAS  Google Scholar 

  82. Byrne JA, Grieve DJ, Cave AC, Shah AM (2003) Oxidative stress and heart failure. Arch Mal Coeur Vaiss 96:214–221

    PubMed  CAS  Google Scholar 

  83. Fabris B, Jackson B, Kohzuki M et al (1990) Increased cardiac angiotensin-converting enzyme in rats with chronic heart failure. Clin Exp Pharmacol Physiol 17:309–314

    PubMed  CAS  Google Scholar 

  84. Sun Y, Weber KT (1994) Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc Res 28:1623–1628

    PubMed  CAS  Google Scholar 

  85. Wang HD, Xu S, Johns DG et al (2001) Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res 88:947–953

    PubMed  CAS  Google Scholar 

  86. Fiordaliso F, Cuccovillo I, Bianchi R et al (2006) Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes. Life Sci 79:121–129

    PubMed  CAS  Google Scholar 

  87. Nakamura K, Fushimi K, Kouchi H et al (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98:794–799

    PubMed  CAS  Google Scholar 

  88. Mann DL (2002) Tumor necrosis factor-induced signal transduction and left ventricular remodeling. J Card Fail 8:S379–S386

    PubMed  CAS  Google Scholar 

  89. Higuchi Y, Otsu K, Nishida K et al (2002) Involvement of reactive oxygen species-mediated NF-kappa B activation in TNF-alpha-induced cardiomyocyte hypertrophy. J Mol Cell Cardiol 34:233–240

    PubMed  CAS  Google Scholar 

  90. Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–1553

    PubMed  CAS  Google Scholar 

  91. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    PubMed  CAS  Google Scholar 

  92. Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    PubMed  CAS  Google Scholar 

  93. Rupp PA, Little CD (2001) Integrins in vascular development. Circ Res 89:566–572

    PubMed  CAS  Google Scholar 

  94. Zhao T, Zhao W, Chen Y et al (2010) Vascular endothelial growth factor (VEGF)-A: role on cardiac angiogenesis following myocardial infarction. Microvasc Res 80:188–194

    PubMed  CAS  Google Scholar 

  95. Zhao W, Zhao T, Huang V et al (2011) Platelet-derived growth factor involvement in myocardial remodeling following infarction. J Mol Cell Cardiol 51:830–838

    PubMed  CAS  Google Scholar 

  96. Zhao T, Zhao W, Chen Y et al (2011) Acidic and basic fibroblast growth factors involved in cardiac angiogenesis following infarction. Int J Cardiol 152:307–313

    PubMed  Google Scholar 

  97. van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78:203–212

    PubMed  Google Scholar 

  98. Sun M, Opavsky MA, Stewart DJ et al (2003) Temporal response and localization of integrins beta1 and beta3 in the heart after myocardial infarction: regulation by cytokines. Circulation 107:1046–1052

    PubMed  CAS  Google Scholar 

  99. Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266(1):37–52

    PubMed  CAS  Google Scholar 

  100. Nishikawa M (2008) Reactive oxygen species in tumor metastasis. Cancer Lett 266:53–59

    PubMed  CAS  Google Scholar 

  101. Komatsu D, Kato M, Nakayama J et al (2008) NADPH oxidase 1 plays a critical mediating role in oncogenic Ras-induced vascular endothelial growth factor expression. Oncogene 27:4724–4732

    PubMed  CAS  Google Scholar 

  102. **a C, Meng Q, Liu LZ et al (2007) Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67:10823–10830

    PubMed  CAS  Google Scholar 

  103. Polytarchou C, Hatziapostolou M, Poimenidi E et al (2009) Nitric oxide stimulates migration of human endothelial and prostate cancer cells through up-regulation of pleiotrophin expression and its receptor protein tyrosine phosphatase beta/zeta. Int J Cancer 124:1785–1793

    PubMed  CAS  Google Scholar 

  104. Shigyo H, Nonaka S, Katada A et al (2007) Inducible nitric oxide synthase expression in various laryngeal lesions in relation to carcinogenesis, angiogenesis, and patients’ prognosis. Acta Otolaryngol 127:970–979

    PubMed  CAS  Google Scholar 

  105. Abid MR, Kachra Z, Spokes KC, Aird WC (2000) NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Lett 486:252–256

    PubMed  CAS  Google Scholar 

  106. Kapila V, Sellke FW, Suuronen EJ et al (2005) Nitric oxide and the angiogenic response: can we improve the results of therapeutic angiogenesis? Expert Opin Investig Drugs 14:37–44

    PubMed  CAS  Google Scholar 

  107. Kondo T, Kobayashi K, Murohara T (2004) Nitric oxide signaling during myocardial angiogenesis. Mol Cell Biochem 264:25–34

    PubMed  CAS  Google Scholar 

  108. Maulik N (2002) Redox signaling of angiogenesis. Antioxid Redox Signal 4:805–815

    PubMed  CAS  Google Scholar 

  109. Gu W, Weihrauch D, Tanaka K et al (2003) Reactive oxygen species are critical mediators of coronary collateral development in a canine model. Am J Physiol Heart Circ Physiol 285:H1582–H1589

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Sun M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sun, Y. (2013). Oxidative Stress in Cardiac Repair and Remodeling: Molecular Pathways and Therapeutic Strategies. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_23

Download citation

Publish with us

Policies and ethics

Navigation