Application of Electron Microscopes in Nanotoxicity Assessment

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1894))

Abstract

In this chapter, we highlight the applications of electron microscopes (EMs) in nanotoxicity assessment. EMs can provide detailed information about the size and morphology of nanomaterials (NMs), their localization in cells and tissues, the nano-bio interactions, as well as the ultrastructural changes induced by NMs exposure. Here, we share with the readers how we prepare the tissue sample, and the different types of EMs used among the nanotoxicologists. It is possible to deploy conventional EMs along or in combination with other analytical techniques, such as electron energy loss spectroscopy (EELS), energy dispersive X-ray spectroscopy (EDS or EDX), and TEM-assisted scanning transmission X-ray microscopy (STXM), toward further elemental and chemical characterization. Appropriate images are inserted to illustrate throughout this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Martinet W, Timmermans J-P, De Meyer GRY (2014) Chapter Five - Methods to assess autophagy in situ—transmission electron microscopy versus immunohistochemistry. In: Galluzzi L, Kroemer G (eds) Methods in enzymology, vol 543. Academic Press, New York, NY, pp 89–114. https://doi.org/10.1016/B978-0-12-801329-8.00005-2

    Chapter  Google Scholar 

  2. Wang Y, Santos A, Kaur G, Evdokiou A, Losic D (2014) Structurally engineered anodic alumina nanotubes as nano-carriers for delivery of anticancer therapeutics. Biomaterials 35(21):5517–5526. https://doi.org/10.1016/j.biomaterials.2014.03.059

    Article  CAS  PubMed  Google Scholar 

  3. Hussain S, Al-Nsour F, Rice AB, Marshburn J, Yingling B, Ji Z, Zink JI, Walker NJ, Garantziotis S (2012) Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano 6(7):5820–5829. https://doi.org/10.1021/nn302235u

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bennett MR (2002) Apoptosis in the cardiovascular system. Heart 87(5):480

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang B, Bian W, Pal A, He Y (2015) Macrophage apoptosis induced by aqueous C60 aggregates changing the mitochondrial membrane potential. Environ Toxicol Pharmacol 39(1):237–246. https://doi.org/10.1016/j.etap.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Yu W, Jiang X, Lv K, Sun S, Zhang F (2011) Analysis of the cytotoxicity of differentially sized titanium dioxide nanoparticles in murine MC3T3-E1 preosteoblasts. J Mater Sci Mater Med 22(8):1933–1945. https://doi.org/10.1007/s10856-011-4375-7

    Article  CAS  PubMed  Google Scholar 

  7. Chen R, Huo L, Shi X, Bai R, Zhang Z, Zhao Y, Chang Y, Chen C (2014) Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano 8(3):2562–2574. https://doi.org/10.1021/nn406184r

    Article  CAS  PubMed  Google Scholar 

  8. Tseng MT, Lu X, Duan X, Hardas SS, Sultana R, Wu P, Unrine JM, Graham U, Butterfield DA, Grulke EA, Yokel RA (2012) Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicol Appl Pharmacol 260(2):173–182. https://doi.org/10.1016/j.taap.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  9. Shindo D, Oikawa T (2013) Analytical electron microscopy for materials science. Springer Science & Business Media, New York, NY

    Google Scholar 

  10. Tumolva L, Park J-Y, J-s K, Miller AL, Chow JC, Watson JG, Park K (2010) Morphological and elemental classification of freshly emitted soot particles and atmospheric ultrafine particles using the TEM/EDS. Aerosol Sci Tech 44(3):202–215

    Article  CAS  Google Scholar 

  11. Austin CA, Umbreit TH, Brown KM, Barber DS, Dair BJ, Francke-Carroll S, Feswick A, Saint-Louis MA, Hikawa H, Siebein KN (2012) Distribution of silver nanoparticles in pregnant mice and develo** embryos. Nanotoxicology 6(8):912–922

    Article  CAS  PubMed  Google Scholar 

  12. Shim KH, Jeong K-H, Bae SO, Kang MO, Maeng EH, Choi CS, Kim Y-R, Hulme J, Lee EK, Kim M-K, An SSA (2014) Assessment of ZnO and SiO2 nanoparticle permeability through and toxicity to the blood–brain barrier using Evans blue and TEM. Int J Nanomedicine 9(Suppl 2):225–233. https://doi.org/10.2147/IJN.S58205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ma Y, He X, Zhang P, Zhang Z, Guo Z, Tai R, Xu Z, Zhang L, Ding Y, Zhao Y (2011) Phytotoxicity and biotransformation of La2O3 nanoparticles in a terrestrial plant cucumber (Cucumis sativus). Nanotoxicology 5(4):743–753

    Article  CAS  PubMed  Google Scholar 

  14. Zhang P, Ma Y, Zhang Z, He X, Guo Z, Tai R, Ding Y, Zhao Y, Chai Z (2012) Comparative toxicity of nanoparticulate/bulk Yb2O3 and YbCl3 to cucumber (Cucumis sativus). Environ Sci Technol 46(3):1834–1841

    Article  CAS  PubMed  Google Scholar 

  15. Xu M, Li J, Iwai H, Mei Q, Fujita D, Su H, Chen H, Hanagata N (2012) Formation of nano-bio-complex as nanomaterials dispersed in a biological solution for understanding nanobiological interactions. Sci Rep 2:406. https://doi.org/10.1038/srep00406 https://www.nature.com/articles/srep00406#supplementary-information

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Goode AE, Porter AE, Ryan MP, McComb DW (2015) Correlative electron and X-ray microscopy: probing chemistry and bonding with high spatial resolution. Nanoscale 7(5):1534–1548

    Article  CAS  PubMed  Google Scholar 

  17. Turner S, Lazar S, Freitag B, Egoavil R, Verbeeck J, Put S, Strauven Y, Van Tendeloo G (2011) High resolution map** of surface reduction in ceria nanoparticles. Nanoscale 3(8):3385–3390

    Article  CAS  PubMed  Google Scholar 

  18. Graham UM, Tseng MT, Jasinski JB, Yokel RA, Unrine JM, Davis BH, Dozier AK, Hardas SS, Sultana R, Grulke EA (2014) In vivo processing of ceria nanoparticles inside liver: impact on free‐radical scavenging activity and oxidative stress. ChemPlusChem 79(8):1083–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40(19):6151–6156

    Article  CAS  PubMed  Google Scholar 

  20. Zhang P, Ma Y, Zhang Z, He X, Zhang J, Guo Z, Tai R, Zhao Y, Chai Z (2012) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6(11):9943–9950

    Article  CAS  PubMed  Google Scholar 

  21. Ma Y, Zhang P, Zhang Z, He X, Zhang J, Ding Y, Zhang J, Zheng L, Guo Z, Zhang L (2015) Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environ Sci Technol 49(17):10667–10674

    Article  CAS  PubMed  Google Scholar 

  22. Dohnalkova AC, Marshall MJ, Arey BW, Williams KH, Buck EC, Fredrickson JK (2011) Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Appl Environ Microbiol 77(4):1254–1262

    Article  CAS  PubMed  Google Scholar 

  23. Jungjohann K, Evans J, Arslan I, Browning N (2011) Electron energy loss spectroscopy for aqueous in situ scanning transmission electron microscopy. Microsc Microanal 17(S2):778

    Article  Google Scholar 

  24. Aronova MA, Leapman RD (2013) Elemental map** by electron energy loss spectroscopy in biology. In: Sousa AA, Kruhlak MJ (eds) Nanoimaging. Springer, New York, NY, pp 209–226

    Chapter  Google Scholar 

  25. Brandenberger C, Clift MJD, Vanhecke D, Mühlfeld C, Stone V, Gehr P, Rothen-Rutishauser B (2010) Intracellular imaging of nanoparticles: Is it an elemental mistake to believe what you see?. Particle and Fibre Toxicology 7 (1):15

    Article  PubMed  PubMed Central  Google Scholar 

  26. He X, Zhang Z, Liu J, Ma Y, Zhang P, Li Y, Wu Z, Zhao Y, Chai Z (2011) Quantifying the biodistribution of nanoparticles. Nature Nanotechnology 6 (12):755–755

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ao He or Michael T. Tseng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, J., He, X., Tseng, M.T. (2019). Application of Electron Microscopes in Nanotoxicity Assessment. In: Zhang, Q. (eds) Nanotoxicity. Methods in Molecular Biology, vol 1894. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8916-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8916-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8915-7

  • Online ISBN: 978-1-4939-8916-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation