Nanoformulations of Antiepileptic Drugs: In Vitro and In Vivo Studies

  • Protocol
  • First Online:
Antiepileptic Drug Discovery

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Epilepsy is a chronic neurological disorder that represents a unique therapeutic challenge displaying high population incidence with more than 60 million people worldwide. Nearly 70 % of people are provisionally responding to the treatment, but 20–60 % of patients become resistant to current antiepileptic drugs (AEDs) (WHO 2015, Epilepsy Fact Sheet No. 999). Also, there is a negative social impact of the pathology since patients and their families suffer stigma and discrimination in many parts of the world. Furthermore, patients who positively respond to the anticonvulsant treatment are subjected to high systemic concentrations of drugs to achieve therapeutically effective levels at the site of action in the central nervous system (CNS), which results in undesirable side effects that threaten their quality of life and their adherence to the treatment.

A complete assessment of the described situation is far beyond the possibilities of the present book chapter, and the sanitary problem of epilepsy (as well as other CNS diseases treated with anticonvulsant drugs) has already been described in the previous chapters. Hence, we will focus in the pharmacokinetic aspects of the problem of epilepsy treatment, including the low brain bioavailability of AEDs due to the restrictions imposed by the blood–brain barrier (BBB) and the high efflux rate of drugs from the CNS caused by the overexpression of ABC transporters at the BBB. In any case, the development of nanoformulations of AEDs seems like a promising strategy to improve their pharmacokinetic profile by increasing the fraction of drug that reaches (and stays in) the CNS, as well as by optimizing the drug’s distribution/metabolism and elimination profile.

Despite the abundance of recent works in the field of pharmaceutical nanoformulations, there is not much to be found in the particular case of epilepsy, especially if one looks for nanosystems with proven in vivo effectiveness. Therefore, this chapter begins with a short overview of the possibilities offered by the pharmaceutical nanotechnology to improve the antiepileptic therapy to continue with a detailed analysis of the methods and the results of the in vitro and in vivo evaluation of nanoformulations of AEDs reported so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lie IA, Hoggen I, Samsonsen C et al (2015) Treatment non-adherence as a trigger for status epilepticus: an observational, retrospective study based on therapeutic drug monitoring. Epilepsy Res 113:28–33. doi:10.1016/j.eplepsyres.2015.03.007

    Article  PubMed  Google Scholar 

  2. Ferrari CM, de Sousa RM, Castro LH (2013) Factors associated with treatment non-adherence in patients with epilepsy in Brazil. Seizure 22:384–389. doi:10.1016/j.seizure.2013.02.006

    Article  PubMed  Google Scholar 

  3. Vlieghe P, Khrestchatisky M (2013) Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev 33:457–516. doi:10.1002/med.21252

    Article  CAS  PubMed  Google Scholar 

  4. Ejendal KF, Hrycyna CA (2002) Multidrug resistance and cancer: the role of the human ABC transporter ABCG2. Curr Protein Pept Sci 3:503–511

    Article  CAS  PubMed  Google Scholar 

  5. Pathan SA, Jain GK, Akhter S et al (2010) Insights into the novel three “D”s of epilepsy treatment: drugs, delivery systems and devices. Drug Discov Today 15:717–732. doi:10.1016/j.drudis.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  6. Moshé SL, Perucca E, Ryvlin P et al (2014) Epilepsy: new advances. Lancet 385:884–898. doi:10.1016/S0140-6736(14)60456-6

    Article  PubMed  Google Scholar 

  7. Perucca E, Tomson T (2011) The pharmacological treatment of epilepsy in adults. Lancet Neurol 10:446–456. doi:10.1016/S1474-4422(11)70047-3

    Article  CAS  PubMed  Google Scholar 

  8. Plumpton CO, Brown I, Reuber M et al (2015) Economic evaluation of a behavior-modifying intervention to enhance antiepileptic drug adherence. Epilepsy Behav 45:180–186. doi:10.1016/j.yebeh.2015.01.035

    Article  PubMed  Google Scholar 

  9. Van Vliet EA, Zibell G, Pekcec A et al (2010) COX-2 inhibition controls P-glycoprotein expression and promotes brain delivery of phenytoin in chronic epileptic rats. Neuropharmacology 58:404–412. doi:10.1016/j.neuropharm.2009.09.012

    Article  PubMed  Google Scholar 

  10. Pekcec A, Unkrüer B, Schlichtiger J et al (2009) Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J Pharmacol Exp Ther 330:939–947. doi:10.1124/jpet.109.152520

    Article  CAS  PubMed  Google Scholar 

  11. Bartels AL, Willemsen AT, Kortekaas R et al (2008) Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm 115:1001–1009. doi:10.1007/s00702-008-0030-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cirrito JR, Deane R, Fagan AM et al (2005) P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. J Clin Invest 115:3285–3290. doi:10.1172/JCI25247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bellera C, Gantner ME, Ruiz ME et al (2013) Recent advances on nanotechnology applications to cancer drug therapy. J Can Res Updates 2:151–185, doi: 10.6000/1929-2279.2013.02.03.3

    Google Scholar 

  14. Talevi A, Bruno-Blanch LE (2012) Efflux transporters at the blood-brain barrier: therapeutic opportunities. In: Montenegro P, Suarez S (eds) Blood-brain barrier new research. Nova Publishers, New York, NY

    Google Scholar 

  15. Patel T, Zhou J, Piepmeier JM et al (2012) Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 64:701–705. doi:10.1016/j.addr.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  16. Yadav KS, Chuttani K, Mishra AK et al (2011) Effect of size on the biodistribution and blood clearance of Etoposide-loaded PLGA nanoparticles. PDA J Pharm Sci Technol 65:131–139, 65/2/131 [pii]

    CAS  PubMed  Google Scholar 

  17. Talevi A, Bruno-Blanch LE (2013) On the development of new antiepileptic drugs for the treatment of pharmacoresistant epilepsy: different approaches to different hypothesis. In: Rocha L, Cavalheiro EA (eds) Pharmacoresistance epilepsy. From genes and molecules to promising therapies. Springer, New York, NY

    Google Scholar 

  18. Luna-Tortós C, Fedrowitz M, Löscher W (2008) Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 55:1364–1375. doi:10.1016/j.neuropharm.2008.08.032

    Article  PubMed  Google Scholar 

  19. Goodman LS, Gilman A (2006) Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, Medical Publishing Division, New York, NY

    Google Scholar 

  20. Zhang C, Zuo Z, Kwan P et al (2011) In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein. Epilepsia 52:1894–1904. doi:10.1111/j.1528-1167.2011.03140.x

    Article  CAS  PubMed  Google Scholar 

  21. Loryan I, Sinha V, Mackie C et al (2014) Mechanistic understanding of brain drug disposition to optimize the selection of potential neurotherapeutics in drug discovery. Pharm Res 31:2203–2219. doi:10.1007/s11095-014-1319-1

    Article  CAS  PubMed  Google Scholar 

  22. Pankevich DE, Altevogt BM, Dunlop J et al (2014) Improving and accelerating drug development for nervous system disorders. Neuron 84:546–553. doi:10.1016/j.neuron.2014.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thassu D, Deleers M, Pathak Y (eds) (2007) Nanoparticulate drug delivery systems. Informa Healthcare, New York, NY

    Google Scholar 

  24. Pathak Y, Thassu D (eds) (2009) Drug delivery nanoparticles formulation and characterization. Informa Healthcare, New York, NY

    Google Scholar 

  25. FDA Inactive Ingredient for Approved Drug Products. http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm. Accessed on 10 Oct 2015

  26. Friese A, Seiller E, Quack G et al (2000) Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. Eur J Pharm Biopharm 49:103–109. doi:10.1016/S0939-6411(99)00073-9

    Article  CAS  PubMed  Google Scholar 

  27. Darius J, Meyer FP, Sabel BA et al (2000) Influence of nanoparticles on the brain-to-serum distribution and the metabolism of valproic acid in mice. J Pharm Pharmacol 52:1043–1047. doi:10.1211/0022357001774958

    Article  CAS  PubMed  Google Scholar 

  28. Kakee A, Takanaga H, Hosoya K et al (2002) In vivo evidence for brain-to-blood efflux transport of valproic acid across the blood-brain barrier. Microvasc Res 63:233–238. doi:10.1006/mvre.2001.2378

    Article  CAS  PubMed  Google Scholar 

  29. Cornford EM, Diep CP, Pardridge WM (1985) Blood-brain barrier transport of valproic acid. J Neurochem 44:1541–1550. doi:10.1111/j.1471-4159.1985.tb08793.x

    Article  CAS  PubMed  Google Scholar 

  30. Liu J-S, Wang J-H, Zhou J et al (2014) Enhanced brain delivery of lamotrigine with Pluronic(®) P123-based nanocarrier. Int J Nanomedicine 9:3923–3935. doi:10.2147/IJN.S62263

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Römermann K, Helmer R, Löscher W (2015) The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2). Neuropharmacology 93:7–14. doi:10.1016/j.neuropharm.2015.01.015

    Article  PubMed  Google Scholar 

  32. Zhang Y, Gupta A, Wang H et al (2005) BCRP transports dipyridamole and is inhibited by calcium channel blockers. Pharm Res 22:2023–2034. doi:10.1007/s11095-005-8384-4

    Article  CAS  PubMed  Google Scholar 

  33. Wilson B, Lavanya Y, Priyadarshini SR et al (2014) Albumin nanoparticles for the delivery of gabapentin: preparation, characterization and pharmacodynamic studies. Int J Pharm 473:73–79. doi:10.1016/j.ijpharm.2014.05.056

    Article  CAS  PubMed  Google Scholar 

  34. Ying X, Wang Y, Liang J et al (2014) Angiopep-conjugated electro-responsive hydrogel nanoparticles: therapeutic potential for epilepsy. Angew Chem Int Ed Engl 53:12436–12440. doi:10.1002/anie.201403846

    CAS  PubMed  Google Scholar 

  35. Hsiao M-H, Larsson M, Larsson A et al (2012) Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide. J Control Release 161:942–948. doi:10.1016/j.jconrel.2012.05.038

    Article  CAS  PubMed  Google Scholar 

  36. Nair R, Kumar AC, Priya VK et al (2012) Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine. Lipids Health Dis 11:72. doi:10.1186/1476-511X-11-72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Leyva-Gómez G, González-Trujano ME, López-Ruiz E et al (2014) Nanoparticle formulation improves the anticonvulsant effect of clonazepam on the pentylenetetrazole-induced seizures: behavior and electroencephalogram. J Pharm Sci 103:2509–2519. doi:10.1002/jps.24044

    Article  PubMed  Google Scholar 

  38. Shaw FZ, Chuang SH, Shieh KR et al (2009) Depression- and anxiety-like behaviors of a rat model with absence epileptic discharges. Neuroscience 160:382–393. doi:10.1016/j.neuroscience.2009.02.053

    Article  CAS  PubMed  Google Scholar 

  39. Bertilsson L (1978) Clinical pharmacokinetics of carbamazepine. Clin Pharmacokinet 3:128–143

    Article  CAS  PubMed  Google Scholar 

  40. Rosillo-de la Torre A, Luna-Bárcenas G, Orozco-Suárez S et al (2014) Pharmacoresistant epilepsy and nanotechnology. Front Biosci (Elite Ed) 6:329–340

    Article  Google Scholar 

  41. Polli J (2008) In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms. AAPS J 10:289–299. doi:10.1208/s12248-008-9027-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. FDA/CDER (2015) Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a BCS.

    Google Scholar 

  43. United States Pharmacopeia Convention (2011) The United States Pharmacopeia 34. United States Pharmacopeia Convention, Rockville, MD

    Google Scholar 

  44. WHO (2006) Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability. 40th Rep WHO Expert Comm Specif Pharm Prep - WHO Tech Rep Ser No 937: 347–390.

    Google Scholar 

  45. Galia E, Nicolaides E, Hörter D et al (1998) Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res 15:698–705. doi:10.1023/a:1011910801212

    Article  CAS  PubMed  Google Scholar 

  46. Jantratid E, De Maio V, Ronda E et al (2009) Application of biorelevant dissolution tests to the prediction of in vivo performance of diclofenac sodium from an oral modified-release pellet dosage form. Eur J Pharm Sci 37:434–441. doi:10.1016/j.ejps.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  47. Otsuka K, Shono Y, Dressman J (2013) Coupling biorelevant dissolution methods with physiologically based pharmacokinetic modelling to forecast in-vivo performance of solid oral dosage forms. J Pharm Pharmacol 65:937–952. doi:10.1111/jphp.12059

    Article  CAS  PubMed  Google Scholar 

  48. Jamzad S, Fassihi R (2006) Role of surfactant and pH on dissolution properties of fenofibrate and glipizide--a technical note. AAPS PharmSciTech 7:E33. doi:10.1208/pt070233

    Article  PubMed  Google Scholar 

  49. Phillips DJ, Pygall SR, Cooper VB et al (2012) Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol 64:1549–1559. doi:10.1111/j.2042-7158.2012.01523.x

    Article  CAS  PubMed  Google Scholar 

  50. Fotaki N, Aivaliotis A, Butler J et al (2009) A comparative study of different release apparatus in generating in vitro–in vivo correlations for extended release formulations. Eur J Pharm Biopharm 73:115–120. doi:10.1016/j.ejpb.2009.04.012

    Article  CAS  PubMed  Google Scholar 

  51. Abdelbary G, Fahmy RH (2009) Diazepam-loaded solid lipid nanoparticles: design and characterization. AAPS PharmSciTech 10:211–219. doi:10.1208/s12249-009-9197-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wei Z, Yuan S, Hao J et al (2013) Mechanism of inhibition of P-glycoprotein mediated efflux by Pluronic P123/F127 block copolymers: relationship between copolymer concentration and inhibitory activity. Eur J Pharm Biopharm 83:266–274. doi:10.1016/j.ejpb.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  53. Hugger ED, Novak BL, Burton PS et al (2002) A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J Pharm Sci 91:1991–2002. doi:10.1002/jps.10176

    Article  CAS  PubMed  Google Scholar 

  54. Illum L (2003) Nasal drug delivery—possibilities, problems and solutions. J Control Release 87:187–198. doi:10.1016/S0168-3659(02)00363-2

    Article  CAS  PubMed  Google Scholar 

  55. Beule AG (2010) Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Curr Top Otorhinolaryngol Head Neck Surg 9:Doc07. doi: 10.3205/cto000071

  56. Shah L, Yadav S, Amiji M (2013) Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Deliv Transl Res 3:336–351. doi:10.1007/s13346-013-0133-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goldsmith M, Abramovitz L, Peer D (2014) Precision nanomedicine in neurodegenerative diseases. ACS Nano 8:1958–1965. doi:10.1021/nn501292z

    Article  CAS  PubMed  Google Scholar 

  58. Barakat NS, Omar SA, Ahmed AA (2006) Carbamazepine uptake into rat brain following intra-olfactory transport. J Pharm Pharmacol 58:63–72. doi:10.1211/jpp.58.1.0008

    Article  CAS  PubMed  Google Scholar 

  59. Serralheiro A, Alves G, Fortuna A et al (2014) Intranasal administration of carbamazepine to mice: a direct delivery pathway for brain targeting. Eur J Pharm Sci 60:32–39. doi:10.1016/j.ejps.2014.04.019

    Article  CAS  PubMed  Google Scholar 

  60. Gavini E, Hegge AB, Rassu G et al (2006) Nasal administration of carbamazepine using chitosan microspheres: in vitro/in vivo studies. Int J Pharm 307:9–15. doi:10.1016/j.ijpharm.2005.09.013

    Article  CAS  PubMed  Google Scholar 

  61. Serralheiro A, Alves G, Fortuna A et al (2015) Direct nose-to-brain delivery of lamotrigine following intranasal administration to mice. Int J Pharm 490:39–46. doi:10.1016/j.ijpharm.2015.05.021

    Article  CAS  PubMed  Google Scholar 

  62. Kälviäinen R (2015) Intranasal therapies for acute seizures. Epilepsy Behav 49:303–306. doi:10.1016/j.yebeh.2015.04.027

    Article  PubMed  Google Scholar 

  63. Kubek MJ, Domb AJ, Veronesi MC (2009) Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics 6:359–371. doi:10.1016/j.nurt.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  64. Veronesi MC, Kubek DJ, Kubek MJ (2011) Intranasal delivery of neuropeptides. Methods Mol Biol 789:303–312. doi:10.1007/978-1-61779-310-3_20

    Article  CAS  PubMed  Google Scholar 

  65. Veronesi MC, Aldouby Y, Domb AJ et al (2009) Thyrotropin-releasing hormone d, l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res 1303:151–160. doi:10.1016/j.brainres.2009.09.039

    Article  CAS  PubMed  Google Scholar 

  66. Eskandari S, Varshosaz J, Minaiyan M et al (2011) Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int J Nanomedicine 6:363–371. doi:10.2147/IJN.S15881

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Alam T, Pandit J, Vohora D et al (2015) Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy. Expert Opin Drug Deliv 12:181–194. doi:10.1517/17425247.2014.945416

    Article  CAS  PubMed  Google Scholar 

  68. Sharma D, Maheshwari D, Philip G et al (2014) Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation. Biomed Res Int 2014:156010. doi:10.1155/2014/156010

    PubMed  PubMed Central  Google Scholar 

  69. Na L, Mao S, Wang J et al (2010) Comparison of different absorption enhancers on the intranasal absorption of isosorbide dinitrate in rats. Int J Pharm 397:59–66. doi:10.1016/j.ijpharm.2010.06.048

    Article  CAS  PubMed  Google Scholar 

  70. Vyas TK, Babbar AK, Sharma RK et al (2006) Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting. J Pharm Sci 95:570–580. doi:10.1002/jps.20480

    Article  CAS  PubMed  Google Scholar 

  71. Samia O, Hanan R, Kamal ET (2012) Carbamazepine mucoadhesive nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv 19:58–67. doi:10.3109/10717544.2011.644349

    Article  CAS  PubMed  Google Scholar 

  72. Acharya SP, Pundarikakshudu K, Upadhyay P et al (2015) Development of phenytoin intranasal microemulsion for treatment of epilepsy. J Pharm Investig 45:375–384. doi:10.1007/s40005-015-0190-3

    Article  CAS  Google Scholar 

  73. Acharya SP, Pundarikakshudu K, Panchal A et al (2013) Development of carbamazepine transnasal microemulsion for treatment of epilepsy. Drug Deliv Transl Res 3:252–259. doi:10.1007/s13346-012-0126-7

    Article  CAS  PubMed  Google Scholar 

  74. Bragagni M, Mennini N, Furlanetto S et al (2014) Development and characterization of functionalized niosomes for brain targeting of dynorphin-B. Eur J Pharm Biopharm 87:73–79. doi:10.1016/j.ejpb.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  75. Mistry A, Stolnik S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379:146–157. doi:10.1016/j.ijpharm.2009.06.019

    Article  CAS  PubMed  Google Scholar 

  76. Varshosaz J, Eskandari S, Tabakhian M (2010) Production and optimization of valproic acid nanostructured lipid carriers by the Taguchi design. Pharm Dev Technol 15:89–96. doi:10.3109/10837450903013568

    Article  CAS  PubMed  Google Scholar 

  77. Hamidi M, Azadi A, Mohamadi-Samani S et al (2011) Valproate-loaded hydrogel nanoparticles: preparation and characterization. J Appl Polym Sci 124:4686. doi:10.1002/app.35527

    Google Scholar 

  78. Lopalco A, Ali H, Denora N et al (2015) Oxcarbazepine-loaded polymeric nanoparticles: development and permeability studies across in vitro models of the blood-brain barrier and human placental trophoblast. Int J Nanomedicine 10:1985–1996. doi:10.2147/IJN.S77498

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the American Chemical Society for the permission to reproduce Fig. 1. The authors would like to thank UNLP and CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María E. Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ruiz, M.E., Castro, G.R. (2016). Nanoformulations of Antiepileptic Drugs: In Vitro and In Vivo Studies. In: Talevi, A., Rocha, L. (eds) Antiepileptic Drug Discovery. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6355-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6355-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6353-9

  • Online ISBN: 978-1-4939-6355-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation