Intranasal Delivery of Neuropeptides

  • Protocol
  • First Online:
Neuropeptides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 789))

Abstract

A major barrier to entry of neuropeptides into the brain is low bioavailability and presence of the blood–brain barrier. Intranasal delivery of neuropeptides provides a potentially promising alternative to other routes of administration, since a direct pathway exists between the olfactory neuroepithelium and the brain. Use of the rat as an animal model in nose to brain delivery of neuropeptides allows for several advantages, including a large surface area within the nasal cavity dedicated to olfactory epithelium and robust neuronal pathways extending to and from most areas of the brain from the nose via the olfactory cortex. A major disadvantage to using rats for nose to brain delivery is the difficulty in selectively targeting the posterior olfactory epithelium (which facilitates delivery to the brain) over the more anterior respiratory epithelium (which facilitates delivery to the lungs and secondarily to the peripheral blood) in the nasal cavity. We have developed a novel delivery system that consists of surgically implanting stainless-steel cannulas in the dorsal aspect of the nasal cavity overlying the olfactory neuroepithelium, thereby allowing neuropeptide compounds to bypass the respiratory epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chow, H.S., Chen, Z., and Matsuura, G.T. (1999) Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J. Pharm. Sci. 88, 754–758.

    Google Scholar 

  2. Hussain, A.A. (1998) Intranasal drug delivery. Adv. Drug Deliv. Rev. 29, 39–49.

    Google Scholar 

  3. Sakane, T., Akizuki, M., Taki, Y., Yamashita, S., Sezaki H., and Nadai, T. (1995) Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J. Pharm. Pharmacol. 47, 379–381.

    Google Scholar 

  4. Sakane, T., Akizuki, M., Yamashita, S., Sezaki, H., Nadai, T. (1994) Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J. Pharm. Pharmacol. 46, 378–379.

    Google Scholar 

  5. Sakane, T., Akizuki, M., Yoshida, M., Yamashita, S., Nadai, T., et al. (1991) Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. J. Pharm. Pharmacol. 43, 449–451.

    Google Scholar 

  6. Agarwal, V., and Mishra, B. (1999) Recent trends in drug delivery systems: intranasal drug delivery. Indian J. Exp. Biol. 37, 6–16.

    Google Scholar 

  7. Lewis, J.L., and Dahl A.R. (1995) Ofactory mucosa: composition, enzymatic localization, and metabolism. In: Handbook of olfaction and gustation ed. RL Doty, pp. 33–52. New York: Marcel Dekker, Inc.

    Google Scholar 

  8. Kubek, M., Yard, M., Lahiri, D.K., and Domb, A.J. (2007) Characterization of Novel Intranasal Sustained-Release Nanoparticles for Delivery of Neuropeptides to the Brain. In Nanoparticles for pharmaceutical applications, ed. TY Domb A, Ravi Kumar NV, pp. 73–84. New York: American Scientific Publishers.

    Google Scholar 

  9. Kubek, M.J., Domb, A.J., and Veronesi, M.C. (2009) Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics 6, 359–371.

    Google Scholar 

  10. Egleton, R.D., and Davis, T.P. (2005) Development of neuropeptide drugs that cross the blood-brain barrier. NeuroRx 2, 44–53.

    Google Scholar 

  11. Hökfelt, T., Broberger, C., Xu, Z.Q., Sergeyev, V., Ubink, R., and Diez, M. (2000) Neuropeptides--an overview. Neuropharmaco­logy 39, 1337–1356.

    Google Scholar 

  12. Strand, F.L. (2005) The neuropeptide concept and the evolution of neuropeptides In Neuropeptides: Regulators of Physiological Processes, ed. FL Strand, pp. 3–18. Cambridge: MIT Press.

    Google Scholar 

  13. Liu, X.F., Fawcett, J.R., Thorne, R.G., DeFor, T.A., and Frey, W.H, 2nd. (2001) Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J. Neurol. Sci. 187, 91–97.

    Google Scholar 

  14. Semkova, I., and Krieglstein, J. (1999) Neuroprotection mediated via neurotrophic factors and induction of neurotrophic factors. Brain Res. Brain Res. Rev. 30, 176–188.

    Google Scholar 

  15. Bjorbaek, C., and Kahn, B.B. (2004) Leptin signaling in the central nervous system and the periphery. Recent Prog. Horm. Res. 59, 305–331.

    Google Scholar 

  16. Gale, S.M., Castracane, V.D., and Mantzoros, C.S. (2004) Energy homeostasis, obesity and eating disorders: recent advances in endocrinology. J. Nutr. 134, 295–298.

    Google Scholar 

  17. Gentilucci, L. (2004) New trends in the development of opioid peptide analogues as advanced remedies for pain relief. Curr. Top. Med. Chem. 4, 19–38.

    Google Scholar 

  18. Lim, K.C., Lim, S.T., and Federoff, H.J. (2003) Neurotrophin secretory pathways and synaptic plasticity. Neurobiol. Aging 24, 1135–1145.

    Google Scholar 

  19. Claes, S.J. (2004) Corticotropin-releasing hormone (CRH) in psychiatry: from stress to psychopathology. Ann. Med. 36, 50–61.

    Google Scholar 

  20. Datar, P., Srivastava, S., Coutinho, E., and Govil G. (2004) Substance P: structure, function, and therapeutics. Curr. Top. Med. Chem. 4, 75–103.

    Google Scholar 

  21. Strohle, A., and Holsboer, F. (2003) Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry 36, S207–214.

    Google Scholar 

  22. Balasubramaniam, A. (2002) Clinical potentials of neuropeptide Y family of hormones. Am. J. Surg. 183, 430–434.

    Google Scholar 

  23. Binaschi, A., Bregola, G., and Simonato, M. (2003) On the role of somatostatin in seizure control: clues from the hippocampus. Rev. Neurosci. 14, 285–301.

    Google Scholar 

  24. Kubek, M.J., and Garg, B.P. (2002) Thyrotropin-releasing hormone in the treatment of intractable epilepsy. Pediatr. Neurol. 26, 9–17.

    Google Scholar 

  25. Veronesi, M.C., Aldouby, Y., Domb, A.J., and Kubek, M.J. (2009) Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res. 1303, 151–160.

    Google Scholar 

  26. Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.-S., McNamara, J.O., and White, L. (2008) Neuroscience. Sunderland, MA. Sinauer Assoc.

    Google Scholar 

  27. Gizurarson, S. (1990). Animal models for intranasal drug delivery studies. A review article. Acta Pharm. Nord. 2, 105–122.

    Google Scholar 

  28. De Rosa, R., Garcia, A.A., Braschi, C., Capsoni, S., Maffei L, et al. (2005) Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc. Natl. Acad. Sci. USA 102, 3811–3816.

    Google Scholar 

  29. Frey, W. (2002) Intranasal delivery: bypassing the blood brain barrier to deliver therapeutic agents to the brain and spinal cord. Drug Deliv. Technol. 151, 66–77.

    Google Scholar 

  30. Ross, T.M., Martinez, P.M., Renner, J.C., Thorne, R.G., Hanson, L.R., and Frey, W.H., 2nd. (2004) Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J. Neuroimmunol. 151, 66–77.

    Google Scholar 

  31. Thorne, R.G., and Frey, W.H., 2nd. (2001) Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin. Pharmacokinet. 40, 907–946.

    Google Scholar 

  32. Thorne, R.G., Pronk, G.J., Padmanabhan, V., and Frey, W.H., 2nd. (2004) Delivery of insulin-like growth factor-I to the rat brain and ­spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127, 481–496.

    Google Scholar 

  33. Alcalay, R.N., Giladi, E., Pick, C.G., and Gozes, I. (2004) Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the elevated plus maze. Neurosci Lett. 361, 128–131.

    Google Scholar 

  34. Gozes, I., Giladi, E., Pinhasov, A., Bardea, A., and Brenneman, D.E. (2000) Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze. J. Pharmacol. Exp. Ther. 293, 1091–1098.

    Google Scholar 

  35. Born, J., Lange, T., Kern, W., McGregor, G.P., Bickel, U., and Fehm, H.L. (2002) Sniffing neuropeptides: a transnasal approach to the human brain. Nat. Neurosci. 5, 514–516.

    Google Scholar 

  36. Capsoni, S., Giannotta, S., and Cattaneo, A. (2002) Nerve growth factor and galantamine ameliorate early signs of neurodegeneration in anti-nerve growth factor mice. Proc. Natl. Acad. Sci. USA 99, 12432–12437.

    Google Scholar 

  37. Chen, X.Q., Fawcett, J.R., Rahman, Y.E., Ala, T.A., and Frey, I.W. (1998) Delivery of nerve growth factor to the brain via the olfactory pathway. J. Alzheimers. Dis. 1, 35–44.

    Google Scholar 

  38. Gozes, I., Bardea, A., Reshef, A., Zamostiano, R., Zhukovsky, S. et al. (1996) Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc. Natl. Acad. Sci. USA 93, 427–432.

    Google Scholar 

  39. Illum, L. (1996) Nasal delivery. The use of animal models to predict performance in man. J. Drug Target 3, 427–442.

    Google Scholar 

  40. Vaccarezza, O.L., Sepich, L.N., and Tramezzani, J.H. (1981) The vomeronasal organ of the rat. J. Anat. 132, 167–185.

    Google Scholar 

  41. Gao, X., Tao, W., Lu, W., Zhang, Q., Zhang, Y. et al. 2006. Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 27, 3482–3490.

    Google Scholar 

  42. Veronesi, M.C., Kubek, D.J., and Kubek M.J. (2007) Intranasal delivery of a thyrotropin-releasing hormone analog attenuates seizures in the amygdala-kindled rat. Epilepsia 48, 2280–2286.

    Google Scholar 

  43. Meredith, M. (2001) Human vomeronasal organ function: A critical review of best and worst cases. Chem. Senses 26, 433–445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Kubek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Veronesi, M.C., Kubek, D.J., Kubek, M.J. (2011). Intranasal Delivery of Neuropeptides. In: Merighi, A. (eds) Neuropeptides. Methods in Molecular Biology, vol 789. Humana Press. https://doi.org/10.1007/978-1-61779-310-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-310-3_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-309-7

  • Online ISBN: 978-1-61779-310-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation