KRAS4b:RAF-1 Homogenous Time-Resolved Fluorescence Resonance Energy Transfer Assay for Drug Discovery

  • Protocol
  • First Online:
KRAS

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2797))

Abstract

Homogenous time-resolved FRET (HTRF) assays have become one of the most popular tools for pharmaceutical drug screening efforts over the last two decades. Large Stokes shifts and long fluorescent lifetimes of lanthanide chelates lead to robust signal to noise, as well as decreased false positive rates compared to traditional assay techniques. In this chapter, we describe an HTRF protein-protein interaction (PPI) assay for the KRAS4b G-domain in the GppNHp-bound state and the RAF-1-RBD currently used for drug screens. Application of this assay contributes to the identification of lead compounds targeting the GTP-bound active state of K-RAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 179.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cox AD, Der CJ (2010) Ras history: the saga continues. Small GTPases 1:2–27

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shih TY, Weeks MO, Young HA et al (1979) Identification of a sarcoma virus-coded phosphoprotein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma virus. Virology 96:64–79

    Article  CAS  PubMed  Google Scholar 

  3. Scolnick EM, Papageorge AG, Shih TY (1979) Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses. Proc Natl Acad Sci USA 76:5355–5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Aelst L, Barr M, Marcus S et al (1993) Complex formation between RAS and RAF and other protein kinases. Proc Natl Acad Sci USA 90:6213–6217

    Article  PubMed  PubMed Central  Google Scholar 

  5. Han M, Golden A, Han Y et al (1993) C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363:133–140

    Article  CAS  PubMed  Google Scholar 

  6. Warne PH, Viciana PR, Downward J (1993) Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364:352–355

    Article  CAS  PubMed  Google Scholar 

  7. Zhang XF, Settleman J, Kyriakis JM et al (1993) Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364:308–313

    Article  CAS  PubMed  Google Scholar 

  8. Moodie SA, Willumsen BM, Weber MJ et al (1993) Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 260:1658–1661

    Article  CAS  PubMed  Google Scholar 

  9. Huang L, Guo Z, Wang F et al (2021) KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther 6:386

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prior IA, Lewis PD, Mattos C (2012) A comprehensive survey of Ras mutations in cancer. Cancer Res 72:2457–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGrath JP, Capon DJ, Smith DH et al (1983) Structure and organization of the human Ki-ras proto-oncogene and a related processed pseudogene. Nature 304:501–506

    Article  CAS  PubMed  Google Scholar 

  12. Aran V (2021) K-RAS4A: lead or supporting role in cancer biology? Front Mol Biosci 8:729830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skoulidis F, Li BT, Dy GK et al (2021) Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med 384:2371–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bauml JM, Li BT, Velcheti V et al (2022) Clinical validation of Guardant360 CDx as a blood-based companion diagnostic for sotorasib. Lung Cancer 166:270–278

    Article  CAS  PubMed  Google Scholar 

  15. Janne PA, Riely GJ, Gadgeel SM et al (2022) Adagrasib in non-small-cell lung cancer harboring a KRAS(G12C) mutation. N Engl J Med 387:120–131

    Article  CAS  PubMed  Google Scholar 

  16. Hunter JC, Manandhar A, Carrasco MA et al (2015) Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol Cancer Res 13:1325–1335

    Article  CAS  PubMed  Google Scholar 

  17. Stokoe D, McCormick F (1997) Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro. EMBO J 16:2384–2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fujita-Yoshigaki J, Shirouzu M, Ito Y et al (1995) A constitutive effector region on the C-terminal side of switch I of the Ras protein. J Biol Chem 270:4661–4667

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh S, **e WQ, Quest AF et al (1994) The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras. J Biol Chem 269:10000–10007

    Article  CAS  PubMed  Google Scholar 

  20. Skinner RH, Picardo M, Gane NM et al (1994) Direct measurement of the binding of RAS to neurofibromin using a scintillation proximity assay. Anal Biochem 223:259–265

    Article  CAS  PubMed  Google Scholar 

  21. Gorman C, Skinner RH, Skelly JV et al (1996) Equilibrium and kinetic measurements reveal rapidly reversible binding of Ras to Raf. J Biol Chem 271:6713–6719

    Article  CAS  PubMed  Google Scholar 

  22. Mathis G (1995) Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem 41:1391–1397

    Article  CAS  PubMed  Google Scholar 

  23. Einhorn L, Krapfenbauer K (2015) HTRF: a technology tailored for biomarker determination-novel analytical detection system suitable for detection of specific autoimmune antibodies as biomarkers in nanogram level in different body fluids. EPMA J 6:23

    Article  PubMed  PubMed Central  Google Scholar 

  24. Selvin PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302

    Article  CAS  PubMed  Google Scholar 

  25. Degorce F, Card A, Soh S et al (2009) HTRF: a technology tailored for drug discovery – a review of theoretical aspects and recent applications. Curr Chem Genomics 3:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kopra K, Vuorinen E, Abreu-Blanco M et al (2020) Homogeneous dual-parametric-coupled assay for simultaneous nucleotide exchange and KRAS/RAF-RBD interaction monitoring. Anal Chem 92:4971–4979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trinh TB, Upadhyaya P, Qian Z et al (2016) Discovery of a direct Ras inhibitor by screening a combinatorial library of cell-permeable bicyclic peptides. ACS Comb Sci 18:75–85

    Article  CAS  PubMed  Google Scholar 

  28. PerkinElmer (ed) (2021) Protein-protein interaction assays with HTRF

    Google Scholar 

  29. Wang X, Allen S, Blake JF et al (2022) Identification of MRTX1133, a noncovalent, potent, and selective KRAS(G12D) inhibitor. J Med Chem 65:3123–3133

    Article  CAS  PubMed  Google Scholar 

  30. Wall VE, Garvey LA, Mehalko JL et al (2014) Combinatorial assembly of clone libraries using site-specific recombination. Methods Mol Biol 1116:193–208

    Article  CAS  PubMed  Google Scholar 

  31. Taylor T, Denson JP, Esposito D (2017) Optimizing expression and solubility of proteins in E. coli using modified media and induction parameters. Methods Mol Biol 1586:65–82

    Article  CAS  PubMed  Google Scholar 

  32. Waybright T, Stephen AG (2024) Nucleotide exchange on RAS proteins using hydrolysable and non-hydrolysable nucleotides. In: KRAS, methods in molecular biology

    Google Scholar 

  33. Sebaugh JL (2011) Guidelines for accurate EC50/IC50 estimation. Pharm Stat 10:128–134

    Article  CAS  PubMed  Google Scholar 

  34. Burlingham BT, Widlanski TS (2003) An intuitive look at the relationship of K-i and IC50: a more general use for the Dixon plot. J Chem Educ 80:214–218

    Article  CAS  Google Scholar 

  35. Christensen JG (2021) Discovery and characterization of MRTX1133, a selective non-covalent inhibitor of KRASG12D. Mirati Therapeutics, p 13

    Google Scholar 

  36. Bar H, Zweifach A (2020) Z’ does not need to be > 0.5. SLAS Discov 25:1000–1008

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  CAS  PubMed  Google Scholar 

  38. Seveus L, Vaisala M, Syrjanen S et al (1992) Time-resolved fluorescence imaging of europium chelate label in immunohistochemistry and in situ hybridization. Cytometry 13:329–338

    Article  CAS  PubMed  Google Scholar 

  39. Connally R, Veal D, Piper J (2004) Flash lamp-excited time-resolved fluorescence microscope suppresses autofluorescence in water concentrates to deliver an 11-fold increase in signal-to-noise ratio. J Biomed Opt 9:725–734

    Article  PubMed  Google Scholar 

  40. Spoerner M, Nuehs A, Herrmann C et al (2007) Slow conformational dynamics of the guanine nucleotide-binding protein Ras complexed with the GTP analogue GTPgammaS. FEBS J 274:1419–1433

    Article  CAS  PubMed  Google Scholar 

  41. Stumber M, Herrmann C, Wohlgemuth S et al (2002) Synthesis, characterization and application of two nucleoside triphosphate analogues, GTPgammaNH(2) and GTPgammaF. Eur J Biochem 269:3270–3278

    Article  CAS  PubMed  Google Scholar 

  42. Spoerner M, Nuehs A, Ganser P et al (2005) Conformational states of Ras complexed with the GTP analogue GppNHp or GppCH2p: implications for the interaction with effector proteins. Biochemistry 44:2225–2236

    Article  CAS  PubMed  Google Scholar 

  43. Kane SA, Fleener CA, Zhang YS et al (2000) Development of a binding assay for p53/HDM2 by using homogeneous time-resolved fluorescence. Anal Biochem 278:29–38

    Article  CAS  PubMed  Google Scholar 

  44. Brooks HB, Geeganage S, Kahl SD et al (2004) Basics of enzymatic assays for HTS. In: Markossian S et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda

    Google Scholar 

  45. Reichstein E, Shami Y, Ramjeesingh M et al (1988) Laser-excited time-resolved solid-phase fluoroimmunoassays with the new europium chelate 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid as label. Anal Chem 60:1069–1074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Bridge Bio for supplying the library of compounds to assay. Additionally, we would like to acknowledge Dominic Esposito, Bill Gillette, Gulcin Gulten, Jennifer Mehalko, Simon Messing, Nitya Ramakrishnan, Troy Taylor, and Vanessa Wall for cloning, protein expression, protein purification, and electrospray ionization mass spectroscopy. We would also like to acknowledge Anna Maciag for facilitating lead compound acquisition. This project was funded in part with federal funds from the National Cancer Institute, National Institutes of Health Contract 75N91019D00024. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, and the mention of trade names, commercial products, or organizations does not imply endorsement by the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik K. Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Larsen, E.K., Abreu-Blanco, M., Rabara, D., Stephen, A.G. (2024). KRAS4b:RAF-1 Homogenous Time-Resolved Fluorescence Resonance Energy Transfer Assay for Drug Discovery. In: Stephen, A.G., Esposito, D. (eds) KRAS. Methods in Molecular Biology, vol 2797. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3822-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3822-4_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3821-7

  • Online ISBN: 978-1-0716-3822-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation