Dissection of Daytime and Nighttime Thermoresponsive Hypocotyl Elongation in Arabidopsis

  • Protocol
  • First Online:
Thermomorphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2795))

  • 303 Accesses

Abstract

Hypocotyl elongation in Arabidopsis is widely utilized as a readout for phytochrome B (phyB) signaling and thermomorphogenesis. Hypocotyl elongation is gated by the circadian clock and, therefore, it occurs at distinct times depending on day length or seasonal cues. In short-day conditions, hypocotyl elongation occurs mainly at the end of nighttime when phyB reverts to the inactive form. In contrast, in long-day conditions, hypocotyl elongation occurs during the daytime when phyB is in the photoactivated form. Warm temperatures can induce hypocotyl growth in both long-day and short-day conditions. However, the corresponding daytime and nighttime temperature responses reflect distinct underpinning mechanisms. Here, we describe assays for dissecting the mechanisms between daytime and nighttime thermoresponsive hypocotyl elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Quint M, Delker C, Franklin KA et al (2016) Molecular and genetic control of plant thermomorphogenesis. Nat Plants 2:15190

    Article  CAS  PubMed  Google Scholar 

  2. Casal JJ, Balasubramanian S (2019) Thermomorphogenesis. Annu Rev Plant Biol 70:321–346

    Article  CAS  PubMed  Google Scholar 

  3. Delker C, Quint M, Wigge PA (2022) Recent advances in understanding thermomorphogenesis signaling. Curr Opin Plant Biol 68:102231

    Article  CAS  PubMed  Google Scholar 

  4. Quint M, Delker C, Balasubramanian S et al (2023) 25 years of thermomorphogenesis research: milestones and perspectives. Trends Plant Sci 28:1098–1100

    Article  CAS  PubMed  Google Scholar 

  5. Legris M, Klose C, Burgie ES et al (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    Article  CAS  PubMed  Google Scholar 

  6. Jung J-H, Domijan M, Klose C et al (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    Article  CAS  PubMed  Google Scholar 

  7. Burgie ES, Vierstra RD (2014) Phytochromes: an atomic perspective on photoactivation and signaling. Plant Cell 26:4568–4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rockwell NC, Lagarias JC (2020) Phytochrome evolution in 3D: deletion, duplication, and diversification. New Phytol 225:2283–2300

    Article  PubMed  Google Scholar 

  9. Klose C, Nagy F, Schäfer E (2019) Thermal reversion of plant phytochromes. Mol Plant 13:386–397

    Article  PubMed  Google Scholar 

  10. Hahm J, Kim K, Qiu Y et al (2020) Increasing ambient temperature progressively disassemble Arabidopsis phytochrome B from individual photobodies with distinct thermostabilities. Nat Commun 11:1660

    Google Scholar 

  11. Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  CAS  PubMed  Google Scholar 

  13. Yoo CY, Han S, Chen M (2020) Nucleus-to-plastid phytochrome signaling in controlling chloroplast biogenesis. Annu Plant Rev 3:251–280

    Article  Google Scholar 

  14. Gray WM, Ostin A, Sandberg G et al (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Foreman J, Johansson H, Hornitschek P et al (2011) Light receptor action is critical for maintaining plant biomass at warm ambient temperatures. Plant J 65:441–452

    Article  CAS  PubMed  Google Scholar 

  16. Dowson-Day MJ, Millar AJ (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J 17:63–71

    Article  CAS  PubMed  Google Scholar 

  17. Nozue K, Covington MF, Duek PD et al (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361

    Article  CAS  PubMed  Google Scholar 

  18. Michael TP, Breton G, Hazen SP et al (2008) A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol 6:e225

    Article  PubMed  PubMed Central  Google Scholar 

  19. Park Y-J, Lee H-J, Ha J-H et al (2017) COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol 215:269–280

    Article  CAS  PubMed  Google Scholar 

  20. Zhu J-Y, Oh E, Wang T et al (2016) TOC1-PIF4 interaction mediates the circadian gating of thermoresponsive growth in Arabidopsis. Nat Commun 7:13692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qiu Y, Li M, Kim RJ-A, et al (2019) Daytime temperature is sensed by phytochrome B in Arabidopsis through a transcriptional activator HEMERA. Nat Commun 10:140

    Google Scholar 

  22. Fiorucci A-S, Galvão VC, Ince YÇ et al (2020) Phytochrome Interacting Factor 7 is important for early responses to elevated temperature in Arabidopsis seedlings. New Phytol 226:50–58

    Article  CAS  PubMed  Google Scholar 

  23. McNellis TW, von Arnim AG, Araki T et al (1994) Genetic and molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains. Plant Cell 6:487–500

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Galvão RM, Li M, Kothadia SM et al (2012) Photoactivated phytochromes interact with HEMERA and promote its accumulation to establish photomorphogenesis in Arabidopsis. Genes Dev 26:1851–1863

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hicks KA, Millar AJ, Carré IA et al (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274:790–792

    Article  CAS  PubMed  Google Scholar 

  26. Leivar P, Monte E, Oka Y et al (2008) Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr Biol 18:1815–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shin J, Kim K, Kang H et al (2009) Phytochromes promote seedling light responses by inhibiting four negatively-acting phytochrome-interacting factors. Proc Natl Acad Sci USA 106:7660–7665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma D, Li X, Guo Y et al (2016) Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proc Natl Acad Sci USA 113:224–229

    Article  CAS  PubMed  Google Scholar 

  29. Van Buskirk EK, Reddy AK, Nagatani A et al (2014) Photobody localization of phytochrome B is tightly correlated with prolonged and light-dependent inhibition of hypocotyl elongation in the dark. Plant Physiol 165:595–607

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gendreau E, Traas J, Desnos T et al (1997) Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health grant R01GM087388 to M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fan, D., Chen, M. (2024). Dissection of Daytime and Nighttime Thermoresponsive Hypocotyl Elongation in Arabidopsis. In: Chen, M. (eds) Thermomorphogenesis. Methods in Molecular Biology, vol 2795. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3814-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3814-9_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3813-2

  • Online ISBN: 978-1-0716-3814-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation