Targeted Analysis of Permethylated N-Glycans Using MRM/PRM Approaches

  • Protocol
  • First Online:
Recombinant Glycoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2762))

  • 424 Accesses

Abstract

Targeted mass spectrometric analysis is widely employed across various omics fields as a validation strategy due to its high sensitivity and accuracy. The approach has been successfully employed for the structural analysis of proteins, glycans, lipids, and metabolites. Multiple reaction monitoring (MRM) and parallel reaction monitoring (PRM) have been the methods of choice for targeted structural studies of biomolecules. These target analyses simplify the analytical workflow, reduce background interference, and increase selectivity/specificity, allowing for a reliable quantification of permethylated N-glycans in complex biological matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gillette MA, Carr SA (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10(1):28–34

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hsiao Y-C, Chi L-M, Chien K-Y et al (2017) Development of a multiplexed assay for oral cancer candidate biomarkers using peptide immunoaffinity enrichment and targeted mass spectrometry. MCP 16(10):1829–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Deng L, Ibrahim YM, Hamid AM et al (2016) Ultra-high resolution ion mobility separations utilizing traveling waves in a 13 m serpentine path length structures for lossless ion manipulations module. Anal Chem 88(18):8957–8964

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hüttenhain R, Malmström J, Picotti P et al (2009) Perspectives of targeted mass spectrometry for protein biomarker verification. Curr Opin Chem Biol 13(5–6):518–525

    PubMed  PubMed Central  Google Scholar 

  5. Tao S, Huang Y, Boyes BE et al (2014) Liquid chromatography-selected reaction monitoring (LC-SRM) approach for the separation and quantitation of sialylated N-glycans linkage isomers. Anal Chem 86(21):10584–10590

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang J-R, Gao W-N, Grimm R et al (2017) A method to identify trace sulfated IgG N-glycans as biomarkers for rheumatoid arthritis. Nat Commun 8(1):1–14

    Google Scholar 

  7. Zhou S, Huang Y, Dong X et al (2017) Isomeric separation of permethylated glycans by porous graphitic carbon (PGC)-LC-MS/MS at high temperatures. Anal Chem 89(12):6590–6597

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou S, Hu Y, DeSantos-Garcia JL et al (2015) Quantitation of permethylated N-glycans through multiple-reaction monitoring (MRM) LC-MS/MS. J Am Soc Mass Spectrom 26(4):596–603

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bermudez A, Pitteri SJ (2021) Enrichment of intact glycopeptides using strong anion exchange and electrostatic repulsion hydrophilic interaction chromatography. Methods Mol Biol (Clifton, NJ) 2271:107–120

    CAS  Google Scholar 

  10. Zhang C, Wang Y, Wang F et al (2017) Quantitative profiling of glycerophospholipids during mouse and human macrophage differentiation using targeted mass spectrometry. Sci Rep 7(1):1–13

    Google Scholar 

  11. Lee H-C, Yokomizo T (2018) Applications of mass spectrometry-based targeted and non-targeted lipidomics. BBRC 504(3):576–581

    CAS  PubMed  Google Scholar 

  12. Franco J, Ferreira C, Paschoal Sobreira TJ et al (2018) Profiling of epidermal lipids in a mouse model of dermatitis: identification of potential biomarkers. PLoS One 13(4):e0196595

    PubMed  PubMed Central  Google Scholar 

  13. Zhou J, Yin Y (2016) Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst 141(23):6362–6373

    CAS  PubMed  Google Scholar 

  14. Tang Y, Zhu Y, Sang S (2020) A novel LC-MS based targeted metabolomic approach to study the biomarkers of food intake. Mol Nutr Food Res 64(22):2000615

    CAS  Google Scholar 

  15. An HJ, Gip P, Kim J et al (2012) Extensive determination of glycan heterogeneity reveals an unusual abundance of high mannose glycans in enriched plasma membranes of human embryonic stem cells. MCP 11(4):M111.010660

    PubMed  Google Scholar 

  16. Selevsek N, Matondo M, Carbayo MS et al (2011) Systematic quantification of peptides/proteins in urine using selected reaction monitoring. Proteomics 11(6):1135–1147

    CAS  PubMed  Google Scholar 

  17. Fu Q, Chen Z, Zhang S et al (2016) Multiple and selective reaction monitoring using triple quadrupole mass spectrometer: preclinical large cohort analysis. Methods Mol Biol 1410:249–264

    CAS  PubMed  Google Scholar 

  18. Peterson AC, Russell JD, Bailey DJ et al (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. MCP 11(11):1475–1488

    PubMed  PubMed Central  Google Scholar 

  19. Keshishian H, Addona T, Burgess M et al (2009) Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. MCP 8(10):2339–2349

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Malchow S, Loosse C, Sickmann A et al (2017) Quantification of cardiovascular disease biomarkers in human platelets by targeted mass spectrometry. Proteomes 5(4):31

    PubMed  PubMed Central  Google Scholar 

  21. Jayaprakash NG, Surolia A (2017) Role of glycosylation in nucleating protein folding and stability. Biochem J 474(14):2333–2347

    CAS  PubMed  Google Scholar 

  22. Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. PNAS 105(24):8256–8261

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cummings RD (2019) Stuck on sugars–how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconj J 36(4):241–257

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao YY, Takahashi M, Gu JG et al (2008) Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 99(7):1304–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schultz MJ, Swindall AF, Bellis SL (2012) Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastasis Rev 31(3):501–518

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Amon R, Reuven EM, Ben-Arye SL et al (2014) Glycans in immune recognition and response. Carbohydr Res 389:115–122

    CAS  PubMed  Google Scholar 

  27. Crispin M, Ward AB, Wilson IA (2018) Structure and immune recognition of the HIV glycan shield. Annu Rev Biophys 47:499–523

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Baum LG, Cobb BA (2017) The direct and indirect effects of glycans on immune function. Glycobiology 27(7):619–624

    CAS  PubMed  Google Scholar 

  29. Freeze HH, Eklund EA, Ng BG et al (2015) Neurological aspects of human glycosylation disorders. Annu Rev Neurosci 38:105–125

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Arigoni-Affolter I, Scibona E, Lin CW et al (2019) Mechanistic reconstruction of glycoprotein secretion through monitoring of intracellular N-glycan processing. Sci Adv 5(11):eaax8930

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Adamczyk B, Tharmalingam T, Rudd PM (2012) Glycans as cancer biomarkers. Biochim Biophys Acta – Gen 1820(9):1347–1353

    CAS  Google Scholar 

  32. Wittenbecher C, Štambuk T, Kuxhaus O et al (2020) Plasma N-glycans as emerging biomarkers of cardiometabolic risk: a prospective investigation in the EPIC-potsdam cohort study. Diabetes Care 43(3):661–668

    CAS  PubMed  Google Scholar 

  33. Watanabe Y, Allen JD, Wrapp D et al (2020) Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369(6501):330–333

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Walls AC, Tortorici MA, Frenz B et al (2016) Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol 23(10):899–905

    CAS  Google Scholar 

  35. Pejchal R, Doores KJ, Walker LM et al (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334(6059):1097–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Helle F, Duverlie G, Dubuisson J (2011) The hepatitis C virus glycan shield and evasion of the humoral immune response. Viruses 3(10):1909–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng W, Goli M, Mirzaei P et al (2019) Revealing the biological attributes of N-glycan isomers in breast cancer brain metastasis using porous graphitic carbon (PGC) liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Proteome Res 18(10):3731–3740

    CAS  PubMed  Google Scholar 

  38. Bai H, Pan Y, Qi L et al (2018) Development a hydrazide-functionalized thermosensitive polymer based homogeneous system for highly efficient N-glycoprotein/glycopeptide enrichment from human plasma exosome. Talanta 186:513–520

    CAS  PubMed  Google Scholar 

  39. Jensen PH, Karlsson NG, Kolarich D et al (2012) Structural analysis of N-and O-glycans released from glycoproteins. Nat Protoc 7(7):1299–1310

    CAS  PubMed  Google Scholar 

  40. Ashwood C, Pratt B, MacLean BX et al (2019) Standardization of PGC-LC-MS-based glycomics for sample specific glycoty**. Analyst 144(11):3601–3612

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou S, Veillon L, Dong X et al (2017) Direct comparison of derivatization strategies for LC-MS/MS analysis of N-glycans. Analyst 142(23):4446–4455

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cho BG, Gutierrez Reyes CD, Goli M et al (2022) Targeted N-glycan analysis with parallel reaction monitoring using a quadrupole-orbitrap hybrid mass spectrometer. Anal Chem 94(44):15215–15222

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health, NIH (1R01GM112490-04, 1R01GM130091-01). The work is also supported by grants from Robert A. Welch Foundation (No. D-0005) and The CH Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehia Mechref .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gutierrez Reyes, C.D. et al. (2024). Targeted Analysis of Permethylated N-Glycans Using MRM/PRM Approaches. In: Bradfute, S.B. (eds) Recombinant Glycoproteins. Methods in Molecular Biology, vol 2762. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3666-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3666-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3665-7

  • Online ISBN: 978-1-0716-3666-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation