Quantification of Virion-Sense and Complementary-Sense DNA Strands of Circular Single-Stranded DNA Viruses

  • Protocol
  • First Online:
Plant-Virus Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2724))

Abstract

Circular ssDNA viruses are ubiquitous and can be found in both prokaryotes and eukaryotes. To understand the interaction of ssDNA viruses with their hosts, it is important to characterize the dynamics of viral sense (VS) and complementary-sense (CS) viral strands during the infection process. Here, we present a simple and rapid protocol that allows sensitive and accurate determination of the VS and CS strands generated during viral infection.

The method consists of a two-step qPCR in which the first step uses a strand-specific (CS or VS) labeled primer and T4 DNA polymerase that lacks strand displacement activity and makes a single copy per VS or CS strand. Next, the T4 DNA polymerase and unincorporated oligonucleotides are removed by a silica membrane spin column. Finally, the purified VS or CS strands are quantified by qPCR in a second step in which amplification uses a tag primer and a specific primer. Absolute quantification of VS and CS strands is obtained by extrapolating the Cq data to a standard curve of ssDNA, which can be generated by phagemid expression. Quantification of VS and CS strands of two geminiviruses in infections of Solanum lycopersicum (tomato) and Nicotiana benthamiana plants using this method is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shulman LM, Davidson I (2017) Viruses with circular single-stranded DNA genomes are everywhere! Annu Rev Virol 4(1):159–180

    Article  CAS  Google Scholar 

  2. López-Bueno A, Tamames J, Velázquez D, Moya A, Quesada A, Alcamí A (2009) High diversity of the viral community from an Antarctic lake. Science 326(5954):858–861

    Article  Google Scholar 

  3. Rosario K, Breitbart M (2011) Exploring the viral world through metagenomics. Curr Opin Virol 1(4):289–297

    Article  CAS  Google Scholar 

  4. Rosario K, Duffy S, Breitbart M (2012) A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol 157(10):1851–1871

    Article  CAS  Google Scholar 

  5. Young JC, Chehoud C, Bittinger K, Bailey A, Diamond JM, Cantu E et al (2015) Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients. Am J Transplant 15(1):200–209

    Article  CAS  Google Scholar 

  6. Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR, Carstens EB et al (2017) Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol 15(3):161–168

    Article  CAS  Google Scholar 

  7. Rastrojo A, Alcamí A (2018) Viruses in polar lake and soil ecosystems. Adv Virus Res 101:39–54

    Article  Google Scholar 

  8. Wang H, Li S, Mahmood A, Yang S, Wang X, Shen Q et al (2018) Plasma virome of cattle from forest region revealed diverse small circular ssDNA viral genomes. Virol J 15(1):11

    Article  Google Scholar 

  9. Yoshida M, Mochizuki T, Urayama SI, Yoshida-Takashima Y, Nishi S, Hirai M, et al. Quantitative viral community DNA analysis reveals the dominance of single-stranded DNA viruses in offshore upper bathyal sediment from Tohoku, Japan. Front Microbiol [Internet]. 2018 [cited 2022 Sep 19];9. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2018.00075

  10. Fontenele RS, Lacorte C, Lamas NS, Schmidlin K, Varsani A, Ribeiro SG (2019) Single stranded DNA viruses associated with capybara faeces sampled in Brazil. Viruses 11(8):710

    Article  CAS  Google Scholar 

  11. Liu Q, Wang H, Ling Y, Yang SX, Wang XC, Zhou R et al (2020) Viral metagenomics revealed diverse CRESS-DNA virus genomes in faeces of forest musk deer. Virol J 17(1):61

    Article  CAS  Google Scholar 

  12. Kim OTP, Kagaya Y, Tran HS, Minei R, Tran TTH, Duong HTT et al (2020) A novel circular ssDNA virus of the phylum Cressdnaviricota discovered in metagenomic data from otter clams (Lutraria rhynchaena). Arch Virol 165(12):2921–2926

    Article  CAS  Google Scholar 

  13. Benler S, Koonin EV (2021) Fishing for phages in metagenomes: what do we catch, what do we miss? Curr Opin Virol 49:142–150

    Article  CAS  Google Scholar 

  14. Kinsella CM, Deijs M, Becker C, Broekhuizen P, van Gool T, Bart A et al (2022) Host prediction for disease-associated gastrointestinal cress DNA viruses. Virus Evol 8(2):veac087

    Article  Google Scholar 

  15. Rosario K, Mettel KA, Benner BE, Johnson R, Scott C, Yusseff-Vanegas SZ et al (2018) Virus discovery in all three major lineages of terrestrial arthropods highlights the diversity of single-stranded DNA viruses associated with invertebrates. PeerJ 6:e5761

    Article  Google Scholar 

  16. Porter AF, Shi M, Eden JS, Zhang YZ, Holmes EC (2019) Diversity and evolution of novel invertebrate DNA viruses revealed by meta-Transcriptomics. Viruses 11(12):1092

    Article  CAS  Google Scholar 

  17. Shi M, Zhang YZ, Holmes EC (2018) Meta-transcriptomics and the evolutionary biology of RNA viruses. Virus Res 243:83–90

    Article  CAS  Google Scholar 

  18. Malathi VG, Renuka DP (2019) ssDNA viruses: key players in global virome. Virus Dis 30(1):3–12

    Article  CAS  Google Scholar 

  19. Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A et al (2019) Marine DNA viral macro- and microdiversity from pole to pole. Cells 177(5):1109–1123.e14

    Article  CAS  Google Scholar 

  20. Wang XW, Blanc S (2021) Insect transmission of plant single-stranded DNA viruses. Annu Rev Entomol 66(1):389–405

    Article  CAS  Google Scholar 

  21. Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9(4):267–276

    Article  CAS  Google Scholar 

  22. Grigoras I, Timchenko T, Grande-Pérez A, Katul L, Vetten HJ, Gronenborn B (2010) High variability and rapid evolution of a nanovirus. JVI 84(18):9105–9117

    Article  CAS  Google Scholar 

  23. Sánchez-Campos S, Domínguez-Huerta G, Díaz-Martínez L, Tomás DM, Navas-Castillo J, Moriones E et al (2018) Differential shape of geminivirus mutant spectra across cultivated and wild hosts with invariant viral consensus sequences. Front Plant Sci 9:932

    Article  Google Scholar 

  24. Kazlauskas D, Varsani A, Krupovic M (2018) Pervasive chimerism in the replication-associated proteins of uncultured single-stranded DNA viruses. Viruses 10(4):187

    Article  Google Scholar 

  25. Juárez M, Rabadán MP, Martínez LD, Tayahi M, Grande-Pérez A, Gómez P (2019) Natural hosts and genetic diversity of the emerging tomato leaf curl New Delhi virus in Spain. Front Microbiol 10:140

    Article  Google Scholar 

  26. García-Arenal F, Zerbini FM (2019) Life on the edge: Geminiviruses at the Interface between crops and wild plant hosts. Annu Rev Virol 6(1):411–433

    Article  Google Scholar 

  27. Ortega-del Campo S, Grigoras I, Timchenko T, Gronenborn B, Grande-Pérez A (2021) Twenty years of evolution and diversification of digitaria streak virus in Digitaria setigera. Virus Evol 7(2):veab083

    Article  Google Scholar 

  28. Mäntynen S, Laanto E, Sundberg LR, Poranen MM, Oksanen HM, ICTV Report Consortium (2020) ICTV virus taxonomy profile: Finnlakeviridae. J Gen Virol 101(9):894–895

    Article  Google Scholar 

  29. Knezevic P, Adriaenssens EM, ICTV Report Consortium null (2021) ICTV virus taxonomy profile: inoviridae. J Gen Virol 102(7): 001614

    Google Scholar 

  30. Knezevic P, Adriaenssens EM, ICTV Report Consortium null (2021) ICTV virus taxonomy profile: plectroviridae. J Gen Virol 102(5): 001597

    Google Scholar 

  31. Prangishvili D, Mochizuki T, Krupovic M, ICTV Report Consortium null (2020) ICTV virus taxonomy profile: spiraviridae. J Gen Virol 101(3):240–241

    Article  CAS  Google Scholar 

  32. Liu Y, Dyall-Smith M, Oksanen HM (2022) ICTV virus taxonomy profile: Pleolipoviridae 2022. J Gen Virol 103(11): 001793

    Google Scholar 

  33. Varsani A, Krupovic M (2018) Smacoviridae: a new family of animal-associated single-stranded DNA viruses. Arch Virol 163(7):2005–2015

    Article  CAS  Google Scholar 

  34. Varsani A, Opriessnig T, Celer V, Maggi F, Okamoto H, Blomström AL et al (2021) Taxonomic update for mammalian anelloviruses (family Anelloviridae). Arch Virol 166(10):2943–2953

    Article  CAS  Google Scholar 

  35. Breitbart M, Delwart E, Rosario K, Segalés J, Varsani A, ICTV Report ConsortiumYR (2017) ICTV virus taxonomy profile: Circoviridae. J Gen Virol 98(8):1997–1998

    Article  CAS  Google Scholar 

  36. Varsani A, Krupovic M (2021) Family Genomoviridae: 2021 taxonomy update. Arch Virol 166(10):2911–2926

    Article  CAS  Google Scholar 

  37. Abbas A, Taylor LJ, Collman RG, Bushman FD (2020) ICTV virus taxonomy profile: Redondoviridae. J Gen Virol 102(1):jgv001526

    Google Scholar 

  38. Krupovic M, Varsani A (2022) Naryaviridae, Nenyaviridae, and Vilyaviridae: three new families of single-stranded DNA viruses in the phylum Cressdnaviricota. Arch Virol 167(12):2907–2921

    Article  CAS  Google Scholar 

  39. Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P et al (2021) Changes to virus taxonomy and to the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2021). Arch Virol 166(9):2633–2648

    Article  CAS  Google Scholar 

  40. Fiallo-Olivé E, Lett JM, Martin DP, Roumagnac P, Varsani A, Zerbini FM et al (2021) ICTV virus taxonomy profile: Geminiviridae 2021. J Gen Virol 102(12):001696

    Article  Google Scholar 

  41. Thomas JE, Gronenborn B, Harding RM, Mandal B, Grigoras I, Randles JW et al (2021) ICTV virus taxonomy profile: Nanoviridae. J Gen Virol 102(3):001544

    Article  CAS  Google Scholar 

  42. Gutierrez C (1999) Geminivirus DNA replication. Cell Mol Life Sci 56(3–4):313–329

    Article  CAS  Google Scholar 

  43. Rampersad S, Tennant P (2018) Replication and expression strategies of viruses. Viruses 2018:55–82

    Google Scholar 

  44. Zhao L, Rosario K, Breitbart M, Duffy S (2019) Eukaryotic circular rep-encoding single-stranded DNA (CRESS DNA) viruses: ubiquitous viruses with small genomes and a diverse host range. Adv Virus Res 103:71–133

    Article  CAS  Google Scholar 

  45. Krupovic M, Varsani A, Kazlauskas D, Breitbart M, Delwart E, Rosario K et al (2020) Cressdnaviricota: a virus phylum unifying seven families of rep-encoding viruses with single-stranded, circular DNA genomes. J Virol 94(12):e00582–e00520

    Article  CAS  Google Scholar 

  46. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (2000) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35(2):105–140

    CAS  Google Scholar 

  47. Péréfarres F, Hoareau M, Chiroleu F, Reynaud B, Dintinger J, Lett JM (2011) A novel synthetic quantification standard including virus and internal report targets: application for the detection and quantification of emerging begomoviruses on tomato. Virol J 8(1):389

    Article  Google Scholar 

  48. Abrahamian PE, Abou-Jawdah Y (2013) Detection and quantitation of the new world Squash leaf curl virus by TaqMan real-time PCR. J Virol Methods 191(1):76–81

    Article  CAS  Google Scholar 

  49. Tyagi AK, Pradier A, Baumer O, Uppugunduri CRS, Huezo-Diaz P, Posfay-Barbe KM et al (2013) Validation of SYBR Green based quantification assay for the detection of human Torque Teno virus titers from plasma. Virol J 10(1):191

    Article  CAS  Google Scholar 

  50. Noris E, Miozzi L (2015) Real-time PCR protocols for the quantification of the begomovirus tomato yellow leaf curl Sardinia virus in tomato plants and in its insect vector. Methods Mol Biol 1236:61–72

    Article  CAS  Google Scholar 

  51. Noris E, Miozzi L (2015) Real-time PCR protocols for the quantification of the Begomovirus tomato yellow leaf curl Sardinia virus in tomato plants and in its insect vector. In: Uyeda I, Masuta C (eds) Plant virology protocols: new approaches to detect viruses and host responses [Internet]. Springer, New York. [cited 2022 Sep 19]. p. 61–72. (Methods in Molecular Biology). Available from: https://doi.org/10.1007/978-1-4939-1743-3_6

    Google Scholar 

  52. Henriques AM, Duarte M, Barros SC, Fagulha T, Ramos F, Luís T et al (2018) Development and validation of a real-time PCR for the detection and quantification of porcine circovirus type 2. Virus Dis 29(3):355–361

    Article  Google Scholar 

  53. Tu T, Zehnder B, Qu B, Ni Y, Main N, Allweiss L et al (2020) A novel method to precisely quantify hepatitis B virus covalently closed circular (ccc)DNA formation and maintenance. Antivir Res 181:104865

    Article  CAS  Google Scholar 

  54. Simón A, Ruiz L, Velasco L, Janssen D (2018) Absolute quantification of tomato leaf curl New Delhi virus Spain strain, ToLCNDV-ES: virus accumulation in a host-specific manner. Plant Dis 102(1):165–171

    Article  Google Scholar 

  55. Rodríguez-Negrete EA, Sánchez-Campos S, Cañizares MC, Navas-Castillo J, Moriones E, Bejarano ER et al (2015) A sensitive method for the quantification of virion-sense and complementary-sense DNA strands of circular single-stranded DNA viruses. Sci Rep 4(1):6438

    Article  Google Scholar 

Download references

Acknowledgements

This work was co-financed by the Programa Operativo FEDER 2014–2020 and Consejería de Economía y Conocimiento, Junta de Andalucía (Grant Number UMA18-FEDERJA-178 to A.G.-P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Grande-Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodríguez-Negrete, E.A., Grande-Pérez, A. (2024). Quantification of Virion-Sense and Complementary-Sense DNA Strands of Circular Single-Stranded DNA Viruses. In: Fontes, E.P., Mäkinen, K. (eds) Plant-Virus Interactions. Methods in Molecular Biology, vol 2724. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3485-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3485-1_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3484-4

  • Online ISBN: 978-1-0716-3485-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation