Protein–Ligand Blind Docking Using CB-Dock2

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2714))

  • 1456 Accesses

Abstract

Protein–ligand blind docking is a widely used method for studying the binding sites and poses of ligands and receptors in pharmaceutical and biological research. Recently, our new blind docking server named CB-Dock2 has been released and is currently being utilized by researchers worldwide. CB-Dock2 outperforms state-of-the-art methods due to its accuracy in binding site identification and binding pose prediction, which are enabled by its knowledge-based docking engine. This highly automated server offers interactive and intuitive input and output web interfaces, making it an efficient and user-friendly tool for the bioinformatics and cheminformatics communities. This chapter provides a brief overview of the methods, followed by a detailed guide on using the CB-Dock2 server. Additionally, we present a case study that evaluates the performance of protein–ligand blind docking using this tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Salentin S, Schreiber S, Haupt VJ et al (2015) PLIP: fully automated protein–ligand interaction profiler. Nucleic Acids Res 43:W443–W447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jacob L, Vert JP (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24:2149–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hassan NM, Alhossary AA, Mu Y et al (2017) Protein-ligand blind docking using QuickVina-W with inter-process Spatio-temporal integration. Sci Rep 7:15451

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hetényi C, van der Spoel D (2009) Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci 11:1729–1737

    Article  Google Scholar 

  5. Hetényi C, van der Spoel D (2006) Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett 580(5):1447–1450

    Article  PubMed  Google Scholar 

  6. Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM et al (2012) High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinform 13(Suppl 14):S13

    Article  Google Scholar 

  7. Lee HS, Zhang Y (2012) BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures. Proteins 80(1):93–110

    Article  CAS  PubMed  Google Scholar 

  8. Tunyasuvunakool K, Adler J, Wu Z et al (2021) Highly accurate protein structure prediction for the human proteome. Nature 596:590–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baek M, DiMaio F, Anishchenko I et al (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rask-Andersen M, Almén MS, Schiöth HB (2011) Trends in the exploitation of novel drug targets. Nat Rev Drug Discov 10:579–590

    Article  CAS  PubMed  Google Scholar 

  11. Singh V, Mizrahi V (2017) Identification and validation of novel drug targets in mycobacterium tuberculosis. Drug Discov Today 22:503–509

    Article  CAS  PubMed  Google Scholar 

  12. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39:W270–W277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qi W, Peng Z, Yang Zhang JY (2018) COACH-D: improved protein–ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic Acids Res 46:313–338

    Google Scholar 

  14. Zhang W, Bell EW, Yin M et al (2020) EDock: blind protein-ligand docking by replica-exchange Monte Carlo simulation. J Cheminform 12:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Labbé CM, Rey J, Lagorce D et al (2015) MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Res 43:W448–W454

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Yang X, Gan J et al (2022) CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res 50:W159–W164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Grimm M, Dai WT, Hou MC, **ao ZX, Cao Y (2020) CB-Dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol Sin 41:138–144

    Article  PubMed  Google Scholar 

  18. Cao Y, Dai W, Miao Z (2018) Evaluation of protein–ligand docking by Cyscore. Methods Mol Biol 1762:233–243

    Article  CAS  PubMed  Google Scholar 

  19. Cao Y, Li L (2014) Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics 30:1674–1680

    Article  CAS  PubMed  Google Scholar 

  20. Trott O, Olson A (2010) Autodock vina: improving the speed and accuracy of docking. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Huey R, Morris GM, Forli S (2012) Using AutoDock 4 and AutoDock Vina with AutoDockTools: a tutorial. The Scripps Research Institute Molecular 32

    Google Scholar 

  22. Trott O, Olson AJ (2010) Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang X, Liu Y, Gan J et al (2022) FitDock: protein-ligand docking by template fitting. Brief Bioinform 23(3):bbac087

    Article  Google Scholar 

  24. Hartshorn MJ, Verdonk ML, Chessari G et al (2007) Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 50(4):726–741

    Article  CAS  PubMed  Google Scholar 

  25. Bienfait B, Ertl P (2013) JSME: a free molecule editor in JavaScript. J Cheminform 5:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu JL, Miao ZC, Li L et al (2016) DRSP: a structural database for single residue substitutions in PDB. Prog Biochem Biophys 43:810–816

    Google Scholar 

  27. Dolinsky TJ, Czodrowski P, Li H et al (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35:W522–W525

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cao Y, Song L, Miao Z et al (2011) Improved side-chain modeling by coupling clash-detection guided iterative search with rotamer relaxation. Bioinformatics 27:785–790

    Article  CAS  PubMed  Google Scholar 

  29. Perola E, Herman L, Weiss J (2012) Development of a rule-based method for the assessment of protein Druggability. J Chem Inf Model 52:1027–1038

    Article  CAS  PubMed  Google Scholar 

  30. Liu N, Xu Z (2019) Using LeDock as a docking tool for computational drug design. IOP Conf Ser Earth Environ Sci 218:012143

    Article  Google Scholar 

  31. Burley SK, Bhikadiya C, Bi C et al (2021) RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 49:D437–D451

    Article  CAS  PubMed  Google Scholar 

  32. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33

    Article  PubMed  PubMed Central  Google Scholar 

  33. Krucinska J, Lombardo MN, Erlandsen H et al (2022) Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens. Commun Biol 5:459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klon AE, Héroux A, Ross LJ et al (2002) Atomic structures of human Dihydrofolate reductase complexed with NADPH and two lipophilic Antifolates at 1.09Å and 1.05Å resolution. J Mol Biol 320:677–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant [81973243].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, Y., Cao, Y. (2024). Protein–Ligand Blind Docking Using CB-Dock2. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3441-7_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3440-0

  • Online ISBN: 978-1-0716-3441-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation