MDock: A Suite for Molecular Inverse Docking and Target Prediction

  • Protocol
  • First Online:
Protein-Ligand Interactions and Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2266))

  • 2211 Accesses

Abstract

Molecular docking is commonly used for identification of drug candidates targeting a specified protein of known structure. With the increasing emphasis on drug repurposing over recent decades, molecular inverse docking has been widely applied to prediction of the potential protein targets of a specified molecule. In practice, inverse docking has many advantages, including early supervision of drugs’ side effects and toxicity. MDock developed from our laboratory is a protein–ligand docking software based on a knowledge-based scoring function and has numerous applications to lead identification. In addition to its computational efficiency on ensemble docking for multiple protein conformations, MDock is well suited for inverse docking. In this chapter, we focus on introducing the protocol of inverse docking with MDock. For academic users, the MDock package is freely available at http://zoulab.dalton.missouri.edu/mdock.htm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012

    Article  PubMed  Google Scholar 

  2. Gorgulla C, Boeszoermenyi A, Wang Z-F, Fischer PD, Coote PW, Padmanabha Das KM, Malets YS, Radchenko DS, Moroz YS, Scott DA, Fackeldey K, Hoffmann M, Iavniuk I, Wagner G, Arthanari H (2020) An open-source drug discovery platform enables ultra-large virtual screens. Nature 580(7805):663–668. https://doi.org/10.1038/s41586-020-2117-z

    Article  CAS  PubMed  Google Scholar 

  3. Chen YZ, Zhi DG (2001) Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43(2):217–226. https://doi.org/10.1002/1097-0134(20010501)43:2<217::aid-prot1032>3.0.co;2-g

    Article  CAS  PubMed  Google Scholar 

  4. Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J, Wang X, Jiang H (2006) TarFisDock: a web server for identifying drug targets with docking approach. Nucleic Acids Res 34(suppl_2):W219–W224. https://doi.org/10.1093/nar/gkl114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang J-C, Chu P-Y, Chen C-M, Lin J-H (2012) idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res 40(W1):W393–W399. https://doi.org/10.1093/nar/gks496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server):W363–W367. https://doi.org/10.1093/nar/gki481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu X, Huang M, Zou X (2018) Docking-based inverse virtual screening: methods, applications, and challenges. Biophysics Reports 4(1):1–16. https://doi.org/10.1007/s41048-017-0045-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang SY, Zou X (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins: Structure, Function, and Bioinformatics 66(2):399–421

    Article  CAS  Google Scholar 

  9. Yan C, Zou X (2015) MDock: an ensemble docking suite for molecular docking, scoring and in silico screening. In: Computer-aided drug discovery. Springer, pp 153–166

    Google Scholar 

  10. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

  11. Hawkins PC, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model 50(4):572–584

    Article  CAS  Google Scholar 

  12. Hawkins PC, Nicholls A (2012) Conformer generation with OMEGA: learning from the data set and the analysis of failures. J Chem Inf Model 52(11):2919–2936

    Article  CAS  Google Scholar 

  13. Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC (2006) Development and validation of a modular, extensible docking program: DOCK 5. J Comput Aided Mol Des 20(10–11):601–619

    Article  CAS  Google Scholar 

  14. Huang SY, Zou X (2006) An iterative knowledge-based scoring function to predict protein–ligand interactions: I. derivation of interaction potentials. J Comput Chem 27(15):1866–1875

    Article  CAS  Google Scholar 

  15. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma Z, Xu X, Zou X (2018) MDockServer: An Efficient Docking Platform for Inverse Virtual Screening. Biophysical Journal 114:56a

    Article  Google Scholar 

  17. Wass MN, Kelley LA, Sternberg MJ (2010) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38(suppl_2):W469–W473

    Article  CAS  Google Scholar 

  18. Heo L, Shin WH, Lee MS, Seok C (2014) GalaxySite: ligand-binding-site prediction by using molecular docking. Nucleic Acids Res 42(Web Server issue):W210–W214. https://doi.org/10.1093/nar/gku321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kozakov D, Grove LE, Hall DR, Bohnuud T, Mottarella SE, Luo L, **a B, Beglov D, Vajda S (2015) The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc 10(5):733–755. https://doi.org/10.1038/nprot.2015.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672. https://doi.org/10.1093/nar/gkj067

    Article  CAS  PubMed  Google Scholar 

  21. Desaphy J, Bret G, Rognan D, Kellenberger E (2015) Sc-PDB: a 3D-database of ligandable binding sites--10 years on. Nucleic Acids Res 43(Database issue):D399–D404. https://doi.org/10.1093/nar/gku928

    Article  CAS  PubMed  Google Scholar 

  22. Bledsoe RK, Madauss KP, Holt JA, Apolito CJ, Lambert MH, Pearce KH, Stanley TB, Stewart EL, Trump RP, Willson TM, Williams SP (2005) A ligand-mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J Biol Chem 280(35):31283–31293. https://doi.org/10.1074/jbc.M504098200

    Article  CAS  PubMed  Google Scholar 

  23. Williams SP, Sigler PB (1998) Atomic structure of progesterone complexed with its receptor. Nature 393(6683):392–396. https://doi.org/10.1038/30775

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support to XZ from OpenEye Scientific Software Inc. (Santa Fe, NM, http://www.eyesopen.com) is gratefully acknowledged. This work was supported by NIH grants R01GM109980 (PI: XZ), R35GM136409 (PI: XZ), R01HL126774 (PI: Jianmin Cui), and R01HL142301 (PI: Jonathan Silva) to XZ. The computations were performed on the high performance computing infrastructure supported by NSF CNS-1429294 (PI: Chi-Ren Shyu) and the HPC resources supported by the University of Missouri Bioinformatics Consortium (UMBC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aoqin Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ma, Z., Zou, X. (2021). MDock: A Suite for Molecular Inverse Docking and Target Prediction. In: Ballante, F. (eds) Protein-Ligand Interactions and Drug Design. Methods in Molecular Biology, vol 2266. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1209-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1209-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1208-8

  • Online ISBN: 978-1-0716-1209-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation