Log in

3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

The rational development of effective energy materials is crucial to the sustainable growth of society. Here, 3D hierarchical porous graphene (hpG)-based materials with micro-, meso-, and macroporous features have recently attracted extensive research efforts due to unique porosities, controllable synthesis, versatile functionalization, favorable mass/electron transport, and superior performances in which corresponding electrochemical performances are strongly dependent on the nature of the building blocks and structural hierarchy of the assemblies. In this review, recent achievements in the controllable synthesis, versatile functionalization, and device application of 3D hpG-based energy materials will be summarized, including controllable and facile synthesis through chemical vapor deposition on 3D porous templates, post-assembly/treatment of graphene oxide nanosheets, and templated polymerization. In addition, graphene material functionalization through heteroatom do**, spatially confined decoration of active nanoparticles, and surface hybridization of graphene-analogous components to enhance electrochemical properties will be discussed. Furthermore, applications of 3D hpG materials in various electrochemical energy storage and conversion systems will be summarized, including lithium-ion batteries, lithium-sulfur batteries, lithium metal anodes, oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and nitrogen reduction reaction. Overall, this review will comprehensively present the property advantages, design principles and synthesis strategies of 3D hpG-based energy materials and provide guidance in the development of various 2D graphene-analogous materials and nanomaterials for advanced electrochemical energy storage and conversion systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chu, S., Cui, Y., Liu, N.: The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017)

    Article  CAS  Google Scholar 

  2. Goodenough, J.B., Park, K.S.: The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. Peng, H.J., Huang, J.Q., Zhang, Q.: A review of flexible lithium-sulfur and analogous alkali metal-chalcogen rechargeable batteries. Chem. Soc. Rev. 46, 5237–5288 (2017)

    Article  CAS  PubMed  Google Scholar 

  4. Lu, J., Chen, Z., Pan, F., et al.: High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1, 35–53 (2018)

    Article  Google Scholar 

  5. Jiao, Y., Zheng, Y., Jaroniec, M.T., et al.: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. Tang, C., Wang, H.F., Zhang, Q.: Multiscale principles to boost reactivity in gas-involving energy electrocatalysis. Acc. Chem. Res. 51, 881–889 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. Han, J., Wei, W., Zhang, C., et al.: Engineering graphenes from the nano- to the macroscale for electrochemical energy storage. Electrochem. Energy Rev. 1, 139–168 (2018)

    Article  Google Scholar 

  8. Hu, C., **ao, Y., Zou, Y., et al.: Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem. Energy Rev. 1, 84–112 (2018)

    Article  Google Scholar 

  9. Mao, J.J., Iocozzia, J., Huang, J.Y., et al.: Graphene aerogels for efficient energy storage and conversion. Energy Environ. Sci. 11, 772–799 (2018)

    Article  CAS  Google Scholar 

  10. Zhang, C., Nicolosi, V.: Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 16, 102–125 (2019)

    Article  Google Scholar 

  11. Tang, C., Titirici, M.M., Zhang, Q.: A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites. J. Energy Chem. 26, 1077–1093 (2017)

    Article  Google Scholar 

  12. Zhang, X.Q., Cheng, X.B., Zhang, Q.: Nanostructured energy materials for electrochemical energy conversion and storage: a review. J. Energy Chem. 25, 967–984 (2016)

    Article  Google Scholar 

  13. Wang, B., Cui, X., Huang, J.Q., et al.: Recent advances in energy chemistry of precious-metal-free catalysts for oxygen electrocatalysis. Chin. Chem. Lett. 29, 1757–1767 (2018)

    Article  CAS  Google Scholar 

  14. Kong, L., Yan, C., Huang, J.Q., et al.: A review of advanced energy materials for magnesium-sulfur batteries. Energy Environ. Mater. 1, 100–112 (2018)

    Article  CAS  Google Scholar 

  15. Li, B.Q., **a, Z.J., Zhang, B.S., et al.: Regulating p-block metals in perovskite nanodots for efficient electrocatalytic water oxidation. Nat. Commun. 8, 934 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, X., Huang, J.Q., Zhang, Q., et al.: Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 29, 1601759 (2017)

    Article  CAS  Google Scholar 

  17. Qiao, M., Tang, C., Tanase, L.C., et al.: Oxygenophilic ionic liquids promote the oxygen reduction reaction in pt-free carbon electrocatalysts. Mater. Horiz. 4, 895–899 (2017)

    Article  CAS  Google Scholar 

  18. Wang, H.F., Chen, R.X., Feng, J.Y., et al.: Freestanding non-precious metal electrocatalysts for oxygen evolution and reduction reactions. ChemElectroChem 5, 1786–1804 (2018)

    Article  CAS  Google Scholar 

  19. Ferrari, A.C., Bonaccorso, F., Fal’ko, V., et al.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Novoselov, K.S., Fal’ko, V.I., Colombo, L., et al.: A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  CAS  PubMed  Google Scholar 

  21. Novoselov, K.S., Geim, A.K., Morozov, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  22. Dong, Y.F., Wu, Z.S., Ren, W.C., et al.: Graphene: a promising 2D material for electrochemical energy storage. Sci. Bull. 62, 724–740 (2017)

    Article  CAS  Google Scholar 

  23. Zhang, J.T., **a, Z.H., Dai, L.M.: Carbon-based electrocatalysts for advanced energy conversion and storage. Sci. Adv. 1, e1500564 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, H., Chhowalla, M., Liu, Z.F.: 2D nanomaterials: graphene and transition metal dichalcogenides. Chem. Soc. Rev. 47, 3015–3017 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Yusoff, A.B., Dai, L.M., Cheng, H.M., et al.: Graphene based energy devices. Nanoscale 7, 6881–6882 (2015)

    PubMed  Google Scholar 

  26. Su, D.S., Centi, G.: A perspective on carbon materials for future energy application. J. Energy Chem. 22, 151–173 (2013)

    Article  CAS  Google Scholar 

  27. Lang, J.W., Zhang, X., Liu, B., et al.: The roles of graphene in advanced Li-ion hybrid supercapacitors. J. Energy Chem. 27, 43–56 (2018)

    Article  Google Scholar 

  28. Hou, P.X., Du, J.H., Liu, C., et al.: Applications of carbon nanotubes and graphene produced by chemical vapor deposition. MRS Bull. 42, 825–833 (2017)

    Article  CAS  Google Scholar 

  29. Park, J., Cho, Y.S., Sung, S.J., et al.: Characteristics tuning of graphene-oxide-based-graphene to various end-uses. Energy Storage Mater. 14, 8–21 (2018)

    Article  Google Scholar 

  30. Yu, X.W., Cheng, H.H., Zhang, M., et al.: Graphene-based smart materials. Nat. Rev. Mater. 2, 17046 (2017)

    CAS  Google Scholar 

  31. Raccichini, R., Varzi, A., Passerini, S., et al.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. El-Kady, M.F., Shao, Y.L., Kaner, R.B.: Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1, 16033 (2016)

    Article  CAS  Google Scholar 

  33. Liu, X., Dai, L.: Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016)

    CAS  Google Scholar 

  34. Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., et al.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008)

    Article  CAS  PubMed  Google Scholar 

  35. Bolotin, K.I., Sikes, K.J., Jiang, Z., et al.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  CAS  Google Scholar 

  36. Balandin, A.A., Ghosh, S., Bao, W.Z., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. Liu, F., Ming, P.M., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007)

    Article  CAS  Google Scholar 

  38. Han, S., Wu, D., Li, S., et al.: Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 26, 849–864 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. Li, Y., Fu, Z.-Y., Su, B.-L.: Hierarchically structured porous materials for energy conversion and storage. Adv. Funct. Mater. 22, 4634–4667 (2012)

    Article  CAS  Google Scholar 

  40. Lv, W., Li, Z.J., Deng, Y.Q., et al.: Graphene-based materials for electrochemical energy storage devices: opportunities and challenges. Energy Storage Mater. 2, 107–138 (2016)

    Article  Google Scholar 

  41. Yao, X., Zhao, Y.L.: Three-dimensional porous graphene networks and hybrids for lithium-ion batteries and supercapacitors. Chem 2, 171–200 (2017)

    Article  CAS  Google Scholar 

  42. Chen, K.N., Wang, Q.R., Niu, Z.Q., et al.: Graphene-based materials for flexible energy storage devices. J. Energy Chem. 27, 12–24 (2018)

    Article  Google Scholar 

  43. Huang, Y., Wang, Y., Tang, C., et al.: Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 30, 1803800 (2018)

    Google Scholar 

  44. Qiu, L., Li, D., Cheng, H.M.: Structural control of graphene-based materials for unprecedented performance. ACS Nano 12, 5085–5092 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. Kim, Y.A., Hayashi, T., Kim, J.H., et al.: Important roles of graphene edges in carbon-based energy storage devices. J. Energy Chem. 22, 183–194 (2013)

    Article  CAS  Google Scholar 

  46. Sheng, L.Z., Liang, S.C., Wei, T., et al.: Space-confinement of MnOnanosheets in densely stacked graphene: ultra-high volumetric capacity and rate performance for lithium-ion batteries. Energy Storage Mater. 12, 94–102 (2018)

    Article  Google Scholar 

  47. Su, Y.Z., Liu, Y.X., Liu, P., et al.: Compact coupled graphene and porous polyaryltriazine-derived frameworks as high performance cathodes for lithium-ion batteries. Angew. Chem. Int. Ed. 54, 1812–1816 (2015)

    Article  CAS  Google Scholar 

  48. Fan, X.L., Chen, X.L., Dai, L.M.: 3D graphene based materials for energy storage. Curr. Opin. Colloid Interface Sci. 20, 429–438 (2015)

    Article  CAS  Google Scholar 

  49. Chen, K., Sun, Z.H., Fang, R.P., et al.: Development of graphene-based materials for lithium-sulfur batteries. Acta Phys-Chim. Sin. 34, 377–390 (2018)

    CAS  Google Scholar 

  50. Yu, M.P., Li, R., Wu, M.M., et al.: Graphene materials for lithium-sulfur batteries. Energy Storage Mater. 1, 51–73 (2015)

    Article  Google Scholar 

  51. Wu, R., Chen, S.G., Deng, J.H., et al.: Hierarchically porous nitrogen-doped carbon as cathode for lithium-sulfur batteries. J. Energy Chem. 27, 1661–1667 (2018)

    Article  Google Scholar 

  52. Fang, R.P., Zhao, S.Y., Pei, S.F., et al.: Toward more reliable lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano 10, 8676–8682 (2016)

    Article  CAS  PubMed  Google Scholar 

  53. Zheng, S.H., Wu, Z.S., Wang, S., et al.: Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Mater. 6, 70–97 (2017)

    Article  Google Scholar 

  54. Zhang, W.L., Xu, C., Ma, C.Q., et al.: Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv. Mater. 29, 1701677 (2017)

    Article  CAS  Google Scholar 

  55. Zhang, K., Yang, X.W., Li, D.: Engineering graphene for high-performance supercapacitors: enabling role of colloidal chemistry. J. Energy Chem. 27, 1–5 (2018)

    Article  CAS  Google Scholar 

  56. Yang, Q.Y., Xu, Z., Gao, C.: Graphene fiber based supercapacitors: strategies and perspective toward high performances. J. Energy Chem. 27, 6–11 (2018)

    Article  Google Scholar 

  57. Xu, B., Wang, H.R., Zhu, Q.Z., et al.: Reduced graphene oxide as a multi-functional conductive binder for supercapacitor electrodes. Energy Storage Mater. 12, 128–136 (2018)

    Article  Google Scholar 

  58. Wu, P.W., He, J., Chen, L.L., et al.: Few-layered graphene via gas-driven exfoliation for enhanced supercapacitive performance. J. Energy Chem. 27, 1509–1515 (2018)

    Article  Google Scholar 

  59. Wu, H., Zhang, Y.N., Cheng, L.F., et al.: Graphene based architectures for electrochemical capacitors. Energy Storage Mater. 5, 8–32 (2016)

    Article  Google Scholar 

  60. Wang, S., Wu, Z.S., Zheng, S.H., et al.: Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities. ACS Nano 11, 4283–4291 (2017)

    Article  CAS  PubMed  Google Scholar 

  61. Shi, X.Y., Zheng, S.H., Wu, Z.S., et al.: Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J. Energy Chem. 27, 25–42 (2018)

    Article  Google Scholar 

  62. Wang, Q., Yan, J., Dong, Z.L., et al.: Densely stacked bubble-pillared graphene blocks for high volumetric performance supercapacitors. Energy Storage Mater. 1, 42–50 (2015)

    Article  Google Scholar 

  63. Yang, Z., Tian, J., Yin, Z., et al.: Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141, 467–480 (2019)

    Article  CAS  Google Scholar 

  64. Tian, J., Yang, Z., Yin, Z., et al.: Perspective to the potential use of graphene in Li-ion battery and supercapacitor. Chem. Rec. (2018). https://doi.org/10.1002/tcr.201800090

    Article  PubMed  Google Scholar 

  65. Wang, H.F., Tang, C., Zhang, Q.: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn–air batteries. Adv. Funct. Mater. 28, 1803329 (2018)

    Article  CAS  Google Scholar 

  66. Wang, H.F., Tang, C., Wang, B., et al.: Defect-rich carbon fiber electrocatalysts with porous graphene skin for flexible solid-state zinc-air batteries. Energy Storage Mater. 15, 124–130 (2018)

    Article  Google Scholar 

  67. Tu, Y.C., Deng, D.H., Bao, X.H.: Nanocarbons and their hybrids as catalysts for non-aqueous lithium-oxygen batteries. J. Energy Chem. 25, 957–966 (2016)

    Article  Google Scholar 

  68. Li, B.Q., Zhang, S.Y., Wang, B., et al.: A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy Environ. Sci. 11, 1723–1729 (2018)

    Article  CAS  Google Scholar 

  69. Qin, L., Zhai, D.Y., Lv, W., et al.: Dense graphene monolith oxygen cathodes for ultrahigh volumetric energy densities. Energy Storage Mater. 9, 134–139 (2017)

    Article  Google Scholar 

  70. Wang, Y.J., Fang, B., Zhang, D., et al.: A review of carbon-composited materials as air-electrode bifunctional electrocatalysts for metal-air batteries. Electrochem. Energy Rev. 1, 1–34 (2018)

    Article  Google Scholar 

  71. Liu, L.Z., Zeng, G., Chen, J.X., et al.: N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy 49, 393–402 (2018)

    Article  CAS  Google Scholar 

  72. Higgins, D., Zamani, P., Yu, A.P., et al.: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ. Sci. 9, 357–390 (2016)

    Article  CAS  Google Scholar 

  73. Dai, L.M., Xue, Y.H., Qu, L.T., et al.: Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115, 4823–4892 (2015)

    Article  CAS  PubMed  Google Scholar 

  74. Dai, L.M.: Carbon-based catalysts for metal-free electrocatalysis. Curr. Opin. Electrochem. 4, 18–25 (2017)

    Article  CAS  Google Scholar 

  75. Duan, J.J., Chen, S., Jaroniec, M., et al.: Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 5, 5207–5234 (2015)

    Article  CAS  Google Scholar 

  76. Zhang, J.T., Dai, L.M.: Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angew. Chem. Int. Ed. 55, 13296–13300 (2016)

    Article  CAS  Google Scholar 

  77. Wang, X., Vasileff, A., Jiao, Y., et al.: Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting. Adv. Mater. 30, 1803625 (2018)

    Google Scholar 

  78. Vasileff, A., Chen, S., Qiao, S.Z.: Three dimensional nitrogen-doped graphene hydrogels with in situ deposited cobalt phosphate nanoclusters for efficient oxygen evolution in a neutral electrolyte. Nanoscale Horiz. 1, 41–44 (2016)

    Article  CAS  Google Scholar 

  79. Hu, C.G., Dai, L.M.: Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 29, 1604942 (2017)

    Article  CAS  Google Scholar 

  80. Wang, B., Tang, C., Wang, H.F., et al.: Anion-regulated hydroxysulfide monoliths as oer/orr/her electrocatalysts and their applications in self-powered electrochemical water splitting. Small Methods 2, 1800055 (2018)

    Article  CAS  Google Scholar 

  81. Guo, X.T., Zheng, S.S., Zhang, G.X., et al.: Nanostructured graphene-based materials for flexible energy storage. Energy Storage Mater. 9, 150–169 (2017)

    Article  Google Scholar 

  82. Wen, L., Li, F., Cheng, H.M.: Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices. Adv. Mater. 28, 4306–4337 (2016)

    Article  CAS  PubMed  Google Scholar 

  83. Shi, Y., Wen, L., Zhou, G.M., et al.: Graphene-based integrated electrodes for flexible lithium ion batteries. 2D Mater. 2, 024004 (2015)

    Article  CAS  Google Scholar 

  84. Lu, C., Li, Z.Z., Yu, L.H., et al.: Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 11, 4614–4626 (2018)

    Article  CAS  Google Scholar 

  85. Wang, K.L., Zheng, B.C., Shrestha, M., et al.: Magnetically enhanced plasma exfoliation of polyaniline-modified graphene for flexible solid-state supercapacitors. Energy Storage Mater. 14, 230–237 (2018)

    Article  Google Scholar 

  86. Liu, X.B., Zou, S.A., Liu, K.X., et al.: Highly compressible three-dimensional graphene hydrogel for foldable all-solid-state supercapacitor. J. Power Sources 384, 214–222 (2018)

    Article  CAS  Google Scholar 

  87. Song, W.L., Li, X.G., Fan, L.Z.: Biomass derivative/graphene aerogels for binder-free supercapacitors. Energy Storage Mater. 3, 113–122 (2016)

    Article  Google Scholar 

  88. Xu, Y., Shi, G., Duan, X.: Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors. Acc. Chem. Res. 48, 1666–1675 (2015)

    Article  CAS  PubMed  Google Scholar 

  89. Cong, H.P., Chen, J.F., Yu, S.H.: Graphene-based macroscopic assemblies and architectures: an emerging material system. Chem. Soc. Rev. 43, 7295–7325 (2014)

    Article  CAS  PubMed  Google Scholar 

  90. Ma, Y., Chen, Y.: Three-dimensional graphene networks: synthesis, properties and applications. Nat. Sci. Rev. 2, 40–53 (2015)

    Article  CAS  Google Scholar 

  91. Shao, Y.L., El-Kady, M.F., Wang, L.J., et al.: Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44, 3639–3665 (2015)

    CAS  PubMed  Google Scholar 

  92. Cao, X.H., Yin, Z.Y., Zhang, H.: Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy Environ. Sci. 7, 1850–1865 (2014)

    Article  CAS  Google Scholar 

  93. Chabot, V., Higgins, D., Yu, A., et al.: A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7, 1564–1596 (2014)

    Article  CAS  Google Scholar 

  94. Luo, B., Zhi, L.J.: Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 8, 456–477 (2015)

    Article  CAS  Google Scholar 

  95. Wu, Q., Yang, L.J., Wang, X.Z., et al.: From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50, 435–444 (2017)

    Article  CAS  PubMed  Google Scholar 

  96. Olszowska, K., Pang, J.B., Wrobel, P.S., et al.: Three-dimensional nanostructured graphene: synthesis and energy, environmental and biomedical applications. Synthetic. Met. 234, 53–85 (2017)

    Article  CAS  Google Scholar 

  97. Mao, S., Lu, G.H., Chen, J.H.: Three-dimensional graphene-based composites for energy applications. Nanoscale 7, 6924–6943 (2015)

    Article  CAS  PubMed  Google Scholar 

  98. **a, X.H., Chao, D.L., Zhang, Y.Q., et al.: Three-dimensional graphene and their integrated electrodes. Nano Today 9, 785–807 (2014)

    Article  CAS  Google Scholar 

  99. Wang, Z., Gao, H., Zhang, Q., et al.: Recent advances in 3D graphene architectures and their composites for energy storage applications. Small 15, 1803858 (2019)

    Google Scholar 

  100. Chen, K.F., Song, S.Y., Liu, F., et al.: Structural design of graphene for use in electrochemical energy storage devices. Chem. Soc. Rev. 44, 6230–6257 (2015)

    Article  CAS  PubMed  Google Scholar 

  101. Su, F.Y., Tang, R., He, Y.B., et al.: Graphene conductive additives for lithium ion batteries: origin, progress and prospect. Chin. Sci. Bull. 62, 3743–3756 (2017)

    Article  Google Scholar 

  102. Su, F.Y., He, Y.B., Li, B.H., et al.: Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 1, 429–439 (2012)

    Article  CAS  Google Scholar 

  103. Zhang, L., Zhang, F., Yang, X., et al.: Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors. Sci. Rep. 3, 1408 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jiao, Y., Zheng, Y., Davey, K., et al.: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 1, 16130 (2016)

    Article  CAS  Google Scholar 

  105. Tang, C., Wang, H.S., Wang, H.F., et al.: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 27, 4516–4522 (2015)

    Article  CAS  PubMed  Google Scholar 

  106. Tang, C., Zhong, L., Zhang, B.S., et al.: 3D mesoporous van der waals heterostructures for trifunctional energy electrocatalysis. Adv. Mater. 30, 1705110 (2018)

    Article  CAS  Google Scholar 

  107. Ren, W.C., Cheng, H.M.: The global growth of graphene. Nat. Nanotechnol. 9, 726–730 (2014)

    Article  CAS  PubMed  Google Scholar 

  108. Zhu, Y.W., Murali, S., Cai, W.W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  PubMed  Google Scholar 

  109. Lin, L., Deng, B., Sun, J.Y., et al.: Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem. Rev. 118, 9281–9343 (2018)

    Article  CAS  PubMed  Google Scholar 

  110. Cai, Z.Y., Liu, B.L., Zou, X.L., et al.: Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018)

    Article  CAS  Google Scholar 

  111. Li, X., Cai, W., An, J., et al.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, Y., Zhang, L.Y., Zhou, C.W.: Review of chemical vapor deposition of graphene and related applications. Acc. Chem. Res. 46, 2329–2339 (2013)

    Article  CAS  PubMed  Google Scholar 

  113. Deng, B., Liu, Z., Peng, H.: Toward mass production of CVD graphene films. Adv. Mater. 30, 1800996 (2018)

    Google Scholar 

  114. Li, X., Cai, W., Colombo, L., et al.: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009)

    Article  CAS  PubMed  Google Scholar 

  115. Yan, K., Fu, L., Peng, H., et al.: Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 46, 2263–2274 (2013)

    Article  CAS  PubMed  Google Scholar 

  116. Chen, Z., Ren, W., Gao, L., et al.: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)

    Article  CAS  PubMed  Google Scholar 

  117. Bi, H., Huang, F.Q., Liang, J., et al.: Large-scale preparation of highly conductive three dimensional graphene and its applications in cdte solar cells. J. Mater. Chem. 21, 17366–17370 (2011)

    Article  CAS  Google Scholar 

  118. Tang, B., Hu, G., Gao, H., et al.: Three-dimensional graphene network assisted high performance dye sensitized solar cells. J. Power Sources 234, 60–68 (2013)

    Article  CAS  Google Scholar 

  119. Tang, Y., Huang, F., Bi, H., et al.: Highly conductive three-dimensional graphene for enhancing the rate performance of LiFePO4 cathode. J. Power Sources 203, 130–134 (2012)

    Article  CAS  Google Scholar 

  120. Van Hoa, N., Lamiel, C., Shim, J.-J.: Mesoporous 3D graphene@NiCo2O4 arrays on nickel foam as electrodes for high-performance supercapacitors. Mater. Lett. 170, 105–109 (2016)

    Article  CAS  Google Scholar 

  121. Li, N., Chen, Z.P., Ren, W.C., et al.: Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U.S.A. 109, 17360–17365 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  122. **ehong, C., Yumeng, S., Wenhui, S., et al.: Preparation of novel 3D graphene networks for supercapacitor applications. Small 7, 3163–3168 (2011)

    Article  CAS  Google Scholar 

  123. Azimirad, R., Safa, S.: Preparation of three dimensional graphene foam-WO3 nanocomposite with enhanced visible light photocatalytic activity. Mater. Chem. Phys. 162, 686–691 (2015)

    Article  CAS  Google Scholar 

  124. Xue, Y., Yu, D., Dai, L., et al.: Three-dimensional B, N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Phys. Chem. Chem. Phys. 15, 12220–12226 (2013)

    Article  CAS  PubMed  Google Scholar 

  125. Dong, X., Wang, X., Wang, L., et al.: 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl. Mater. Interfaces. 4, 3129–3133 (2012)

    Article  CAS  PubMed  Google Scholar 

  126. Feng, X., Zhang, Y., Zhou, J., et al.: Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale 7, 2427–2432 (2015)

    Article  CAS  PubMed  Google Scholar 

  127. Chen, Z.P., Xu, C., Ma, C.Q., et al.: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)

    Article  CAS  PubMed  Google Scholar 

  128. Shan, C.S., Tang, H., Wong, T.L., et al.: Facile synthesis of a large quantity of graphene by chemical vapor deposition: an advanced catalyst carrier. Adv. Mater. 24, 2491–2495 (2012)

    Article  CAS  PubMed  Google Scholar 

  129. Chen, Z.P., Ren, W.C., Liu, B.L., et al.: Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon 48, 3543–3550 (2010)

    Article  CAS  Google Scholar 

  130. Li, W., Gao, S., Wu, L., et al.: High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci. Rep. 3, 2125 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  131. Zhang, Q.F., Wang, L.L., Wang, J., et al.: Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Storage Mater. 15, 361–367 (2018)

    Article  Google Scholar 

  132. Sha, J., Gao, C., Lee, S.K., et al.: Preparation of three-dimensional graphene foams using powder metallurgy templates. ACS Nano 10, 1411–1416 (2016)

    Article  CAS  PubMed  Google Scholar 

  133. Drieschner, S., Weber, M., Wohlketzetter, J., et al.: High surface area graphene foams by chemical vapor deposition. 2D Mater. 3, 045013 (2016)

    Article  CAS  Google Scholar 

  134. Zhang, L., DeArmond, D., Alvarez, N.T., et al.: Beyond graphene foam, a new form of three-dimensional graphene for supercapacitor electrodes. J. Mater. Chem. A 4, 1876–1886 (2016)

    Article  CAS  Google Scholar 

  135. Ito, Y., Tanabe, Y., Sugawara, K., et al.: Three-dimensional porous graphene networks expand graphene-based electronic device applications. Phys. Chem. Chem. Phys. 20, 6024–6033 (2018)

    Article  CAS  PubMed  Google Scholar 

  136. Ito, Y., Qiu, H.J., Fujita, T., et al.: Bicontinuous nanoporous N-doped graphene for the oxygen reduction reaction. Adv. Mater. 26, 4145–4150 (2014)

    Article  CAS  PubMed  Google Scholar 

  137. Ito, Y., Tanabe, Y., Qiu, H.J., et al.: High-quality three-dimensional nanoporous graphene. Angew. Chem. Int. Ed. 53, 4822–4826 (2014)

    Article  CAS  Google Scholar 

  138. Ito, Y., Cong, W., Fujita, T., et al.: High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 2131–2136 (2015)

    Article  CAS  Google Scholar 

  139. Tanabe, Y., Ito, Y., Sugawara, K., et al.: Electric properties of dirac fermions captured into 3D nanoporous graphene networks. Adv. Mater. 28, 10304–10310 (2016)

    Article  CAS  PubMed  Google Scholar 

  140. Fujita, T., Qian, L.H., Inoke, K., et al.: Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 92, 251902 (2008)

    Article  CAS  Google Scholar 

  141. Fujita, T., Okada, H., Koyama, K., et al.: Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields. Phys. Rev. Lett. 101, 166601 (2008)

    Article  CAS  PubMed  Google Scholar 

  142. Di Bernardo, I., Avvisati, G., Mariani, C., et al.: Two-dimensional hallmark of highly interconnected three-dimensional nanoporous graphene. ACS Omega 2, 3691–3697 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Qin, K.Q., Liu, E.Z., Li, J.J., et al.: Free-standing 3D nanoporous duct-like and hierarchical nanoporous graphene films for micron-level flexible solid-state asymmetric supercapacitors. Adv. Energy Mater. 6, 1600755 (2016)

    Article  CAS  Google Scholar 

  144. Qin, K., Kang, J., Li, J., et al.: Continuously hierarchical nanoporous graphene film for flexible solid-state supercapacitors with excellent performance. Nano Energy 24, 158–164 (2016)

    Article  CAS  Google Scholar 

  145. Rummeli, M.H., Kramberger, C., Gruneis, A., et al.: On the graphitization nature of oxides for the formation of carbon nanostructures. Chem. Mater. 19, 4105–4107 (2007)

    Article  CAS  Google Scholar 

  146. Rummeli, M.H., Schaffel, F., Bachmatiuk, A., et al.: Oxide catalysts for carbon nanotube and few layer graphene formation. Phys. Status Solidi B 246, 2530–2533 (2009)

    Article  CAS  Google Scholar 

  147. Rummeli, M.H., Bachmatiuk, A., Scott, A., et al.: Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 4, 4206–4210 (2010)

    Article  CAS  PubMed  Google Scholar 

  148. Scott, A., Dianat, A., Borrnert, F., et al.: The catalytic potential of high-κ dielectrics for graphene formation. Appl. Phys. Lett. 98, 073110 (2011)

    Article  CAS  Google Scholar 

  149. Ning, G.Q., Fan, Z.J., Wang, G., et al.: Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes. Chem. Commun. 47, 5976–5978 (2011)

    Article  CAS  Google Scholar 

  150. Zhang, Q., Huang, J.Q., Zhao, M.Q., et al.: Carbon nanotube mass production: principles and processes. ChemSusChem 4, 864–889 (2011)

    Article  CAS  PubMed  Google Scholar 

  151. Ma, X., Ning, G., Qi, C., et al.: Phosphorus and nitrogen dual-doped few-layered porous graphene: a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces. 6, 14415–14422 (2014)

    Article  CAS  PubMed  Google Scholar 

  152. Fan, Z., Liu, Y., Yan, J., et al.: Template-directed synthesis of pillared-porous carbon nanosheet architectures: high-performance electrode materials for supercapacitors. Adv. Energy Mater. 2, 419–424 (2012)

    Article  CAS  Google Scholar 

  153. Jia, X., Zhang, G., Wang, T., et al.: Monolithic nitrogen-doped graphene frameworks as ultrahigh-rate anodes for lithium ion batteries. J. Mater. Chem. A 3, 15738–15744 (2015)

    Article  CAS  Google Scholar 

  154. Wang, H.F., Tang, C., Zhang, Q.: Template growth of nitrogen-doped mesoporous graphene on metal oxides and its use as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. Catal. Today 301, 25–31 (2018)

    Article  CAS  Google Scholar 

  155. **e, K., Qin, X., Wang, X., et al.: Carbon nanocages as supercapacitor electrode materials. Adv. Mater. 24, 347–352 (2012)

    Article  CAS  PubMed  Google Scholar 

  156. Lyu, Z., Xu, D., Yang, L., et al.: Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries. Nano Energy 12, 657–665 (2015)

    Article  CAS  Google Scholar 

  157. Zhao, J., Lai, H., Lyu, Z., et al.: Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv. Mater. 27, 3541–3545 (2015)

    Article  CAS  PubMed  Google Scholar 

  158. Chen, S., Bi, J., Zhao, Y., et al.: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24, 5593–5597 (2012)

    Article  CAS  PubMed  Google Scholar 

  159. Cui, C., Qian, W., Yu, Y., et al.: Highly electroconductive mesoporous graphene nanofibers and their capacitance performance at 4 V. J. Am. Chem. Soc. 136, 2256–2259 (2014)

    Article  CAS  PubMed  Google Scholar 

  160. Jia, X.L., Lu, Y.F., Wei, F.: Confined growth of Li4Ti5O12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes. Nano Res. 9, 230–239 (2016)

    Article  CAS  Google Scholar 

  161. Tian, J., Cui, C., Zheng, C., et al.: Mesoporous tubular graphene electrode for high performance supercapacitor. Chinese Chem. Lett. 29, 599–602 (2018)

    Article  CAS  Google Scholar 

  162. Tian, J., Cui, C., **e, Q., et al.: EMIMBF4–GBL binary electrolyte working at − 70 °C and 3.7 V for a high performance graphene-based capacitor. J. Mater. Chem. A 6, 3593–3601 (2018)

    Article  CAS  Google Scholar 

  163. Zheng, Z.M., Guo, H.C., Pei, F., et al.: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li–S batteries. Adv. Funct. Mater. 26, 8952–8959 (2016)

    Article  CAS  Google Scholar 

  164. Tang, C., Li, B.Q., Zhang, Q., et al.: CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 26, 577–585 (2016)

    Article  CAS  Google Scholar 

  165. Xu, B., Peng, L., Wang, G., et al.: Easy synthesis of mesoporous carbon using nano-CaCO3 as template. Carbon 48, 2377–2380 (2010)

    Article  CAS  Google Scholar 

  166. Zhao, C., Wang, W., Yu, Z., et al.: Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities. J. Mater. Chem. 20, 976–980 (2010)

    Article  Google Scholar 

  167. Shi, L., Chen, K., Du, R., et al.: Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil-water separation. J. Am. Chem. Soc. 138, 6360–6363 (2016)

    Article  CAS  PubMed  Google Scholar 

  168. Chen, K., Li, C., Chen, Z., et al.: Bioinspired synthesis of CVD graphene flakes and graphene-supported molybdenum sulfide catalysts for hydrogen evolution reaction. Nano Res. 9, 249–259 (2016)

    Article  CAS  Google Scholar 

  169. Shlyakhova, E.V., Bulusheva, L.G., Kanygin, M.A., et al.: Synthesis of nitrogen-containing porous carbon using calcium oxide nanoparticles. Phys. Status Solidi B 251, 2607–2612 (2014)

    Article  CAS  Google Scholar 

  170. Xu, B., Zheng, D., Jia, M., et al.: Nano-CaO templated carbon by CVD: from nanosheets to nanocages. Mater. Lett. 143, 159–162 (2015)

    Article  CAS  Google Scholar 

  171. Zhou, M., Lin, T., Huang, F., et al.: Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Funct. Mater. 23, 2263–2269 (2013)

    Article  CAS  Google Scholar 

  172. Tian, M., Wang, W., Liu, Y., et al.: A three-dimensional carbon nano-network for high performance lithium ion batteries. Nano Energy 11, 500–509 (2015)

    Article  CAS  Google Scholar 

  173. Xue, Y.H., Ding, Y., Niu, J.B., et al.: Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci. Adv. 1, e1400198 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Bi, H., Chen, I.W., Lin, T., et al.: A new tubular graphene form of a tetrahedrally connected cellular structure. Adv. Mater. 27, 5943–5949 (2015)

    Article  CAS  PubMed  Google Scholar 

  175. Strubel, P., Thieme, S., Biemelt, T., et al.: ZnOhard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv. Funct. Mater. 25, 287–297 (2015)

    Article  CAS  Google Scholar 

  176. Chen, K., Zhang, F., Sun, J.Y., et al.: Growth of defect-engineered graphene on manganese oxides for Li-ion storage. Energy Storage Mater. 12, 110–118 (2018)

    Article  Google Scholar 

  177. Min, K.A., Park, J., Ryou, J., et al.: Polar oxide substrates for graphene growth: a first-principles investigation of graphene on MgO(111). Curr. Appl. Phys. 13, 803–807 (2013)

    Article  Google Scholar 

  178. Kelber, J.A., Gaddam, S., Vamala, C., et al.: Direct graphene growth on MgO(111) by physical vapor deposition: interfacial chemistry and band gap formation. Spintronics Iv 8100, 81000Y (2011)

    Article  CAS  Google Scholar 

  179. Zhao, M.Q., Zhang, Q., Huang, J.Q., et al.: Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides - properties, synthesis, and applications. Adv. Funct. Mater. 22, 675–694 (2012)

    Article  CAS  Google Scholar 

  180. Tian, G.L., Zhao, M.Q., Zhang, B.S., et al.: Monodisperse embedded nanoparticles derived from an atomic metal-dispersed precursor of layered double hydroxide for architectured carbon nanotube formation. J. Mater. Chem. A 2, 1686–1696 (2014)

    Article  CAS  Google Scholar 

  181. Zhao, M.Q., Zhang, Q., Zhang, W., et al.: Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides. J. Am. Chem. Soc. 132, 14739–14741 (2010)

    Article  CAS  PubMed  Google Scholar 

  182. Zhao, M.Q., Zhang, Q., Huang, J.Q., et al.: Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 5, 3410 (2014)

    Article  CAS  PubMed  Google Scholar 

  183. Tian, G.L., Zhang, Q., Zhao, M.Q., et al.: Fluidized-bed CVD of unstacked double-layer templated graphene and its application in supercapacitors. AIChE J. 61, 747–755 (2015)

    Article  CAS  Google Scholar 

  184. Shi, J.L., Wang, H.F., Zhu, X.L., et al.: The nanostructure preservation of 3D porous graphene: new insights into the graphitization and surface chemistry of non-stacked double-layer templated graphene after high-temperature treatment. Carbon 103, 36–44 (2016)

    Article  CAS  Google Scholar 

  185. Shi, J.L., Peng, H.J., Zhu, L., et al.: Template growth of porous graphene microspheres on layered double oxide catalysts and their applications in lithium-sulfur batteries. Carbon 92, 96–105 (2015)

    Article  CAS  Google Scholar 

  186. Shi, J.L., Tian, G.L., Zhang, Q., et al.: Customized casting of unstacked graphene with high surface area (> 1300 m2 g−1) and its application in oxygen reduction reaction. Carbon 93, 702–712 (2015)

    Article  CAS  Google Scholar 

  187. Shi, J.L., Tang, C., Peng, H.J., et al.: 3D mesoporous graphene: cVD self-assembly on porous oxide templates and applications in high-stable Li–S batteries. Small 11, 5243–5252 (2015)

    Article  CAS  PubMed  Google Scholar 

  188. Wang, H., Zhi, L., Liu, K., et al.: Thin-sheet carbon nanomesh with an excellent electrocapacitive performance. Adv. Funct. Mater. 25, 5420–5427 (2015)

    Article  CAS  Google Scholar 

  189. Zhang, H., Zhang, X., Sun, X., et al.: Shape-controlled synthesis of nanocarbons through direct conversion of carbon dioxide. Sci. Rep. 3, 3534 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  190. Zhang, H.T., Zhang, X., Sun, X.Z., et al.: Large-scale production of nanographene sheets with a controlled mesoporous architecture as high-performance electrochemical electrode materials. ChemSusChem 6, 1084–1090 (2013)

    Article  CAS  PubMed  Google Scholar 

  191. Chakrabarti, A., Lu, J., Skrabutenas, J.C., et al.: Conversion of carbon dioxide to few-layer graphene. J. Mater. Chem. 21, 9491–9493 (2011)

    Article  CAS  Google Scholar 

  192. Wang, H., Sun, K., Tao, F., et al.: 3D honeycomb-like structured graphene and its high efficiency as a counter-electrode catalyst for dye-sensitized solar cells. Angew. Chem. Int. Ed. 52, 9210–9214 (2013)

    Article  CAS  Google Scholar 

  193. Chen, X., Wu, B., Liu, Y.Q.: Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 45, 2057–2074 (2016)

    Article  CAS  PubMed  Google Scholar 

  194. Chen, J.Y., Guo, Y.L., Jiang, L.L., et al.: Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv. Mater. 26, 1348–1353 (2014)

    Article  CAS  PubMed  Google Scholar 

  195. Lin, T.Q., Chen, I.W., Liu, F.X., et al.: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350, 1508–1513 (2015)

    Article  CAS  PubMed  Google Scholar 

  196. Bi, H., Lin, T., Xu, F., et al.: New graphene form of nanoporous monolith for excellent energy storage. Nano Lett. 16, 349–354 (2016)

    Article  CAS  PubMed  Google Scholar 

  197. Chen, K., Chai, Z.G., Li, C., et al.: Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C3N4 composite for hydrocarbon oxidation. ACS Nano 10, 3665–3673 (2016)

    Article  CAS  PubMed  Google Scholar 

  198. Yingying, L., Yin, F., Zhangxiong, W., et al.: In-situ confined growth of monodisperse pt nanoparticle@graphene nanobox composites as electrocatalytic nanoreactors. Small 11, 1003–1010 (2015)

    Article  CAS  Google Scholar 

  199. Zhong, L., Tang, C., Wang, B., et al.: SAPO-34 templated growth of hierarchical porous graphene cages as electrocatalysts for both oxygen reduction and evolution. New Carbon Mater. 32, 509–516 (2017)

    Article  Google Scholar 

  200. Ning, G.Q., Xu, C.G., Cao, Y.M., et al.: Chemical vapor deposition derived flexible graphene paper and its application as high performance anodes for lithium rechargeable batteries. J. Mater. Chem. A 1, 408–414 (2013)

    Article  CAS  Google Scholar 

  201. Xu, C.G., Ning, G.Q., Zhu, X., et al.: Synthesis of graphene from asphaltene molecules adsorbed on vermiculite layers. Carbon 62, 213–221 (2013)

    Article  CAS  Google Scholar 

  202. Tang, C., Zhang, Q., Zhao, M.Q., et al.: Nitrogen-doped aligned carbon nanotube/graphene sandwiches: facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 26, 6100–6105 (2014)

    Article  CAS  PubMed  Google Scholar 

  203. Tang, C., Zhang, Q., Zhao, M.Q., et al.: Resilient aligned carbon nanotube/graphene sandwiches for robust mechanical energy storage. Nano Energy 7, 161–169 (2014)

    Article  CAS  Google Scholar 

  204. Chen, K., Li, C., Shi, L., et al.: Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability. Nat. Commun. 7, 13440 (2016)

    Article  CAS  PubMed  Google Scholar 

  205. Qin, J., He, C.N., Zhao, N.Q., et al.: Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8, 1728–1738 (2014)

    Article  CAS  PubMed  Google Scholar 

  206. Shi, L., Chen, K., Du, R., et al.: Direct synthesis of few-layer graphene on NaCl crystals. Small 11, 6302–6308 (2015)

    Article  CAS  PubMed  Google Scholar 

  207. Li, N., Yang, G., Sun, Y., et al.: Free-standing and transparent graphene membrane of polyhedron box-shaped basic building units directly grown using a nacl template for flexible transparent and stretchable solid-state supercapacitors. Nano Lett. 15, 3195–3203 (2015)

    Article  CAS  PubMed  Google Scholar 

  208. Zhu, Y.W., Ji, H.X., Cheng, H.M., et al.: Mass production and industrial applications of graphene materials. Nat. Sci. Rev. 5, 90–101 (2018)

    Article  CAS  Google Scholar 

  209. **, H.L., Bu, Y.F., Li, J., et al.: Strong graphene 3D assemblies with high elastic recovery and hardness. Adv. Mater. 30, 1707424 (2018)

    Article  CAS  Google Scholar 

  210. Lim, J., Lee, G.Y., Lee, H.J., et al.: Open porous graphene nanoribbon hydrogel via additive-free interfacial self-assembly: fast mass transport electrodes for high-performance biosensing and energy storage. Energy Storage Mater. 16, 251–258 (2019)

    Article  Google Scholar 

  211. Zhang, L., Shi, G.Q.: Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 115, 17206–17212 (2011)

    Article  CAS  Google Scholar 

  212. Cong, H.P., Ren, X.C., Wang, P., et al.: Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6, 2693–2703 (2012)

    Article  CAS  PubMed  Google Scholar 

  213. Xu, Y.X., Sheng, K.X., Li, C., et al.: Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324–4330 (2010)

    Article  CAS  PubMed  Google Scholar 

  214. Hu, H., Zhao, Z., Wan, W., et al.: Ultralight and highly compressible graphene aerogels. Adv. Mater. 25, 2219–2223 (2013)

    Article  CAS  PubMed  Google Scholar 

  215. Zhao, Y., Hu, C., Hu, Y., et al.: A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem. Int. Ed. 51, 11371–11375 (2012)

    Article  CAS  Google Scholar 

  216. Sudeep, P.M., Narayanan, T.N., Ganesan, A., et al.: Covalently interconnected three-dimensional graphene oxide solids. ACS Nano 7, 7034–7040 (2013)

    Article  CAS  PubMed  Google Scholar 

  217. **e, X., Zhou, Y.L., Bi, H.C., et al.: Large-range control of the microstructures and properties of three-dimensional porous graphene. Sci. Rep. 3, 2117 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  218. Tao, Y., **e, X., Lv, W., et al.: Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 3, 2975 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  219. Shao, J.J., Wu, S.D., Zhang, S.B., et al.: Graphene oxide hydrogel at solid/liquid interface. Chem. Commun. 47, 5771–5773 (2011)

    Article  CAS  Google Scholar 

  220. Liu, L., Niu, Z., Zhang, L., et al.: Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 26, 4855–4862 (2014)

    Article  CAS  PubMed  Google Scholar 

  221. Choi, B.G., Yang, M., Hong, W.H., et al.: 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6, 4020–4028 (2012)

    Article  CAS  PubMed  Google Scholar 

  222. Huang, X.D., Sun, B., Li, K.F., et al.: Mesoporous graphene paper immobilised sulfur as a flexible electrode for lithium-sulfur batteries. J. Mater. Chem. A 1, 13484–13489 (2013)

    Article  CAS  Google Scholar 

  223. Huang, X., Qian, K., Yang, J., et al.: Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater. 24, 4419–4423 (2012)

    Article  CAS  PubMed  Google Scholar 

  224. Wang, J., Wang, H.S., Wang, K., et al.: Ice crystals growth driving assembly of porous nitrogen-doped graphene for catalyzing oxygen reduction probed by in situ fluorescence electrochemistry. Sci. Rep. 4, 6723 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Li, Y., Chen, J., Huang, L., et al.: Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv. Mater. 26, 4789–4793 (2014)

    Article  CAS  PubMed  Google Scholar 

  226. Zou, J.L., Kim, F.: Diffusion driven layer-by-layer assembly of graphene oxide nanosheets into porous three-dimensional macrostructures. Nat. Commun. 5, 5254 (2014)

    Article  CAS  PubMed  Google Scholar 

  227. Huang, X.D., Sun, B., Su, D.W., et al.: Soft-template synthesis of 3D porous graphene foams with tunable architectures for lithium-O2 batteries and oil adsorption applications. J. Mater. Chem. A 2, 7973–7979 (2014)

    Article  CAS  Google Scholar 

  228. Gao, Y.D., Zhang, Y.Y., Zhang, Y., et al.: Three-dimensional paper-like graphene framework with highly orientated laminar structure as binder-free supercapacitor electrode. J. Energy Chem. 25, 49–54 (2016)

    Article  Google Scholar 

  229. Chen, X., **ao, Z.B., Ning, X.T., et al.: Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium-sulfur batteries. Adv. Energy Mater. 4, 1301988 (2014)

    Article  CAS  Google Scholar 

  230. Sun, W.W., Peng, T., Liu, Y.M., et al.: Ordered mesoporous carbon-decorated reduced graphene oxide as efficient counter electrode for dye-sensitized solar cells. Carbon 77, 18–24 (2014)

    Article  CAS  Google Scholar 

  231. Song, Y.F., Yang, J., Wang, K., et al.: In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. Carbon 96, 955–964 (2016)

    Article  CAS  Google Scholar 

  232. Cong, H.P., Wang, P., Gong, M., et al.: Facile synthesis of mesoporous nitrogen-doped graphene: an efficient methanol-tolerant cathodic catalyst for oxygen reduction reaction. Nano Energy 3, 55–63 (2014)

    Article  CAS  Google Scholar 

  233. Niu, W.H., Li, L.G., Liu, J., et al.: Graphene-supported mesoporous carbons prepared with thermally removable templates as efficient catalysts for oxygen electroreduction. Small 12, 1900–1908 (2016)

    Article  CAS  PubMed  Google Scholar 

  234. Zhu, Y.W., Murali, S., Stoller, M.D., et al.: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011)

    Article  CAS  PubMed  Google Scholar 

  235. Huang, J., Wang, J., Wang, C., et al.: Hierarchical porous graphene carbon-based supercapacitors. Chem. Mater. 27, 2107–2113 (2015)

    Article  CAS  Google Scholar 

  236. Su, H., Zhang, H.T., Liu, F.Y., et al.: High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem. Eng. J. 322, 73–81 (2017)

    Article  CAS  Google Scholar 

  237. You, Y., Zeng, W.C., Yin, Y.X., et al.: Hierarchically micro/mesoporous activated graphene with a large surface area for high sulfur loading in Li–S batteries. J. Mater. Chem. A 3, 4799–4802 (2015)

    Article  CAS  Google Scholar 

  238. Kim, T.H., Bae, J., Lee, T.H., et al.: Room-temperature hydrogen storage via two-dimensional potential well in mesoporous graphene oxide. Nano Energy 27, 402–411 (2016)

    Article  CAS  Google Scholar 

  239. Xu, X.T., Liu, Y., Wang, M., et al.: Design and fabrication of mesoporous graphene via carbothermal reaction for highly efficient capacitive deionization. Electrochim. Acta 188, 406–413 (2016)

    Article  CAS  Google Scholar 

  240. Palaniselvam, T., Kashyap, V., Bhange, S.N., et al.: Nanoporous graphene enriched with Fe/Co-N active sites as a promising oxygen reduction electrocatalyst for anion exchange membrane fuel cells. Adv. Funct. Mater. 26, 2150–2162 (2016)

    Article  CAS  Google Scholar 

  241. Sun, H.T., Mei, L., Liang, J.F., et al.: Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356, 599–604 (2017)

    Article  CAS  PubMed  Google Scholar 

  242. Gu, X.Y., Hu, M., Du, Z.S., et al.: Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization. Electrochim. Acta 182, 183–191 (2015)

    Article  CAS  Google Scholar 

  243. Melinte, G., Florea, I., Moldovan, S., et al.: A 3D insight on the catalytic nanostructuration of few-layer graphene. Nat. Commun. 5, 4109 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Zhao, Y., Hu, C.G., Song, L., et al.: Functional graphene nanomesh foam. Energy Environ. Sci. 7, 1913–1918 (2014)

    Article  CAS  Google Scholar 

  245. Lacey, S.D., Kirsch, D.J., Li, Y.J., et al.: Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 30, 1705651 (2018)

    Article  CAS  Google Scholar 

  246. Yang, X., Zhang, L., Zhang, F., et al.: Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries. ACS Nano 8, 5208–5215 (2014)

    Article  CAS  PubMed  Google Scholar 

  247. Wang, D.W., Li, F., Liu, M., et al.: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 47, 373–376 (2008)

    Article  Google Scholar 

  248. Niu, W.H., Li, L.G., Liu, X.J., et al.: Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 137, 5555–5562 (2015)

    Article  CAS  PubMed  Google Scholar 

  249. Pan, F.P., Duan, Y.X., Zhang, X.K., et al.: A facile synthesis of nitrogen/sulfur co-doped graphene for the oxygen reduction reaction. ChemCatChem 8, 163–170 (2016)

    Article  CAS  Google Scholar 

  250. Li, J., Wang, N., Tian, J., et al.: Cross-coupled macro-mesoporous carbon network toward record high energy-power density supercapacitor at 4 V. Adv. Funct. Mater. 28, 1806153 (2018)

    Article  CAS  Google Scholar 

  251. Wang, J.W., Jia, X.L., Atinafu, D.G., et al.: Synthesis of “graphene-like” mesoporous carbons for shape-stabilized phase change materials with high loading capacity and improved latent heat. J. Mater. Chem. A 5, 24321–24328 (2017)

    Article  CAS  Google Scholar 

  252. Xu, G.Y., Ding, B., Nie, P., et al.: Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 6, 194–199 (2014)

    Article  CAS  PubMed  Google Scholar 

  253. Tang, C., Wang, H.F., Chen, X., et al.: Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28, 6845–6851 (2016)

    Article  CAS  PubMed  Google Scholar 

  254. Peng, H.J., Liang, J.Y., Zhu, L., et al.: Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium-sulfur batteries. ACS Nano 8, 11280–11289 (2014)

    Article  CAS  PubMed  Google Scholar 

  255. Yoon, J.C., Lee, J.S., Kim, S.I., et al.: Three-dimensional graphene nano-networks with high quality and mass production capability via precursor-assisted chemical vapor deposition. Sci. Rep. 3, 1788 (2013)

    Article  CAS  PubMed Central  Google Scholar 

  256. Jiao, Y.C., Han, D.D., Liu, L.M., et al.: Highly ordered mesoporous few-layer graphene frameworks enabled by Fe3O4 nanocrystal superlattices. Angew. Chem. Int. Ed. 54, 5727–5731 (2015)

    Article  CAS  Google Scholar 

  257. Jiao, Y., Han, D., Ding, Y., et al.: Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nat. Commun. 6, 6420 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Han, D.D., Yan, Y.C., Wei, J.S., et al.: Fine-tuning the wall thickness of ordered mesoporous graphene by exploiting ligand exchange of colloidal nanocrystals. Front. Chem. 5, 117 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Ji, L., Guo, G.N., Sheng, H.Y., et al.: Free-standing, ordered mesoporous few-layer graphene framework films derived from nanocrystal superlattices self-assembled at the solid- or liquid-air interface. Chem. Mater. 28, 3823–3830 (2016)

    Article  CAS  Google Scholar 

  260. Yu, H.J., Guo, G.N., Ji, L., et al.: Designed synthesis of ordered mesoporous graphene spheres from colloidal nanocrystals and their application as a platform for high-performance lithium-ion battery composite electrodes. Nano Res. 9, 3757–3771 (2016)

    Article  CAS  Google Scholar 

  261. Dai, L.M.: Functionalization of graphene for efficient energy conversion and storage. Acc. Chem. Res. 46, 31–42 (2013)

    Article  CAS  PubMed  Google Scholar 

  262. Yuan, H., Kong, L., Li, T., et al.: A review of transition metal chalcogenide/graphene nanocomposites for energy storage and conversion. Chin. Chem. Lett. 28, 2180–2194 (2017)

    Article  CAS  Google Scholar 

  263. Hu, C.G., Liu, D., ** for energy conversion and storage. Prog. Nat. Sci. 28, 121–132 (2018)

    Article  CAS  Google Scholar 

  264. Jiao, Y., Zheng, Y., Jaroniec, M., et al.: Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadnnap to achieve the best performance. J. Am. Chem. Soc. 136, 4394–4403 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hu, C.G., Dai, L.M.: Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem. Int. Ed. 55, 11736–11758 (2016)

    Article  CAS  Google Scholar 

  266. Ma, Y.F., Guo, Q.B., Yang, M., et al.: Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Mater. 13, 134–141 (2018)

    Article  Google Scholar 

  267. Ma, Z.L., Dou, S., Shen, A.L., et al.: Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 54, 1888–1892 (2015)

    Article  CAS  Google Scholar 

  268. Xu, H.F., Ma, L.B., **, Z.: Nitrogen-doped graphene: synthesis, characterizations and energy applications. J. Energy Chem. 27, 146–160 (2018)

    Article  Google Scholar 

  269. Lee, W.J., Lim, J., Kim, S.O.: Nitrogen dopants in carbon nanomaterials: defects or a new opportunity? Small Methods 1, 1600014 (2017)

    Article  CAS  Google Scholar 

  270. Li, M.T., Zhang, L.P., Xu, Q., et al.: N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: theoretical considerations. J. Catal. 314, 66–72 (2014)

    Article  CAS  Google Scholar 

  271. Hou, T.Z., Chen, X., Peng, H.J., et al.: Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 12, 3283–3291 (2016)

    Article  CAS  PubMed  Google Scholar 

  272. Li, J.C., Hou, P.X., Zhao, S.Y., et al.: A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions. Energy Environ. Sci. 9, 3079–3084 (2016)

    Article  CAS  Google Scholar 

  273. Zhang, J.A., Song, Y., Kopec, M., et al.: Facile aqueous route to nitrogen-doped mesoporous carbons. J. Am. Chem. Soc. 139, 12931–12934 (2017)

    Article  CAS  PubMed  Google Scholar 

  274. Qin, L., Ding, R.M., Wang, H.X., et al.: Facile synthesis of porous nitrogen-doped holey graphene as an efficient metal-free catalyst for the oxygen reduction reaction. Nano Res. 10, 305–319 (2017)

    Article  CAS  Google Scholar 

  275. Liu, X.B., Amiinu, I.S., Liu, S.J., et al.: Transition metal/nitrogen dual-doped mesoporous graphene-like carbon nanosheets for the oxygen reduction and evolution reactions. Nanoscale 8, 13311–13320 (2016)

    Article  CAS  PubMed  Google Scholar 

  276. Zhang, J., Zhao, Z., **a, Z., et al.: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444–452 (2015)

    Article  CAS  PubMed  Google Scholar 

  277. Yang, H.B., Miao, J.W., Hung, S.F., et al.: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2, e1501122 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Chen, S., Duan, J.J., Jaroniec, M., et al.: Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 26, 2925–2930 (2014)

    Article  CAS  PubMed  Google Scholar 

  279. Chen, S., Duan, J., Zheng, Y., et al.: Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and Zn–air batteries. Energy Storage Mater. 1, 17–24 (2015)

    Article  Google Scholar 

  280. Kim, J.H., Kannan, A.G., Woo, H.S., et al.: A bi-functional metal-free catalyst composed of dual-doped graphene and mesoporous carbon for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 3, 18456–18465 (2015)

    Article  CAS  Google Scholar 

  281. Jia, Y., Zhang, L.Z., Du, A.J., et al.: Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016)

    Article  CAS  PubMed  Google Scholar 

  282. Shi, J.L., Tang, C., Huang, J.Q., et al.: Effective exposure of nitrogen heteroatoms in 3D porous graphene framework for oxygen reduction reaction and lithium-sulfur batteries. J. Energy Chem. 27, 167–175 (2018)

    Article  Google Scholar 

  283. Qiao, M., Tang, C., He, G., et al.: Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites. J. Mater. Chem. A 4, 12658–12666 (2016)

    Article  CAS  Google Scholar 

  284. Li, R., Wei, Z., Gou, X.: Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 5, 4133–4142 (2015)

    Article  CAS  Google Scholar 

  285. Qu, K.G., Zheng, Y., Dai, S., et al.: Polydopamine-graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale 7, 12598–12605 (2015)

    Article  CAS  PubMed  Google Scholar 

  286. Zhu, C., Fu, S., Shi, Q., et al.: Single-atom electrocatalysts. Angew. Chem. Int. Ed. 56, 13944–13960 (2017)

    Article  CAS  Google Scholar 

  287. Bayatsarmadi, B., Zheng, Y., Vasileff, A., et al.: Recent advances in atomic metal do** of carbon-based nanomaterials for energy conversion. Small 13, 1700191 (2017)

    Article  CAS  Google Scholar 

  288. Li, Z., Wang, D., Wu, Y., et al.: Recent advances in the precise control of isolated single-site catalysts by chemical methods. Nat. Sci. Rev. 5, 673–689 (2018)

    Article  Google Scholar 

  289. Tang, C., Zhang, Q.: Can metal-nitrogen-carbon catalysts satisfy oxygen electrochemistry? J. Mater. Chem. A 4, 4998–5001 (2016)

    Article  CAS  Google Scholar 

  290. Qiu, H.J., Ito, Y., Cong, W.T., et al.: Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015)

    Article  CAS  Google Scholar 

  291. Chen, Y.J., Ji, S.F., Wang, Y.G., et al.: Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017)

    Article  CAS  Google Scholar 

  292. Li, J., Chen, M., Cullen, D.A., et al.: Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Cat. 1, 935–945 (2018)

    Article  CAS  Google Scholar 

  293. Yang, W., Li, X., Li, Y., et al.: Applications of metal–organic-framework-derived carbon materials. Adv. Mater. 30, 1804740 (2018)

    Article  CAS  Google Scholar 

  294. Zhang, L., Jia, Y., Gao, G., et al.: Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 4, 285–297 (2018)

    Article  CAS  Google Scholar 

  295. Tang, C., Wang, B., Wang, H.F., et al.: Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn–air batteries. Adv. Mater. 29, 1703185 (2017)

    Article  CAS  Google Scholar 

  296. Wang, J., Huang, Z., Liu, W., et al.: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017)

    Article  CAS  PubMed  Google Scholar 

  297. Chen, S., Duan, J., Ran, J., et al.: N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. Energy Environ. Sci. 6, 3693–3699 (2013)

    Article  CAS  Google Scholar 

  298. Peng, H.J., Zhang, Z.W., Huang, J.Q., et al.: A cooperative interface for highly efficient lithium-sulfur batteries. Adv. Mater. 28, 9551–9558 (2016)

    Article  CAS  PubMed  Google Scholar 

  299. Wang, H.F., Tang, C., Wang, B., et al.: Bifunctional transition metal hydroxysulfides: room-temperature sulfurization and their applications in Zn–air batteries. Adv. Mater. 29, 1702327 (2017)

    Article  CAS  Google Scholar 

  300. Li, B.Q., Zhang, S.Y., Tang, C., et al.: Anionic regulated NiFe (oxy)sulfide electrocatalysts for water oxidation. Small 13, 1700610 (2017)

    Article  CAS  Google Scholar 

  301. Tang, C., Wang, H.F., Wang, H.S., et al.: Guest-host modulation of multi-metallic (oxy) hydroxides for superb water oxidation. J. Mater. Chem. A 4, 3210–3216 (2016)

    Article  CAS  Google Scholar 

  302. Geim, A.K., Grigorieva, I.V.: Van der waals heterostructures. Nature 499, 419–425 (2013)

    Article  CAS  PubMed  Google Scholar 

  303. Novoselov, K.S., Mishchenko, A., Carvalho, A., et al.: 2D materials and van der waals heterostructures. Science 353, aac9439 (2016)

    Article  CAS  PubMed  Google Scholar 

  304. Long, X., Li, J., **ao, S., et al.: A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 53, 7584–7588 (2014)

    Article  CAS  Google Scholar 

  305. Ma, W., Ma, R., Wang, C., et al.: A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 9, 1977–1984 (2015)

    Article  CAS  PubMed  Google Scholar 

  306. Ma, R.Z., Liu, X.H., Liang, J.B., et al.: Molecular-scale heteroassembly of redoxable hydroxide nanosheets and conductive graphene into superlattice composites for high-performance supercapacitors. Adv. Mater. 26, 4173–4178 (2014)

    Article  CAS  PubMed  Google Scholar 

  307. Jia, Y., Zhang, L.Z., Gao, G.P., et al.: A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29, 1700017 (2017)

    Article  CAS  Google Scholar 

  308. Duan, J.J., Chen, S., Jaroniec, M., et al.: Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9, 931–940 (2015)

    Article  CAS  Google Scholar 

  309. Han, Q., Cheng, Z.H., Gao, J., et al.: Mesh-on-mesh graphitic-C3N4@graphene for highly efficient hydrogen evolution. Adv. Funct. Mater. 27, 1606352 (2017)

    Article  CAS  Google Scholar 

  310. Tang, C., Zhang, Q.: Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv. Mater. 29, 1604103 (2017)

    Article  CAS  Google Scholar 

  311. Winter, M., Barnett, B., Xu, K.: Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018)

    Article  CAS  PubMed  Google Scholar 

  312. Zhu, J., Wang, T., Fan, F.R., et al.: Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 10, 8243–8251 (2016)

    Article  CAS  PubMed  Google Scholar 

  313. Su, F.Y., You, C.H., He, Y.B., et al.: Flexible and planar graphene conductive additives for lithium-ion batteries. J. Mater. Chem. 20, 9644–9650 (2010)

    Article  CAS  Google Scholar 

  314. Wu, G., Ran, R., Zhao, B.T., et al.: 3D amorphous carbon and graphene co-modified LiFePO4 composite derived from polyol process as electrode for high power lithium-ion batteries. J. Energy Chem. 23, 363–375 (2014)

    Article  CAS  Google Scholar 

  315. Xu, Y.X., Lin, Z.Y., Zhong, X., et al.: Solvated graphene frameworks as high-performance anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 54, 5345–5350 (2015)

    Article  CAS  Google Scholar 

  316. Yan, X.J., Wang, Y.Y., Liu, C.C., et al.: Engineering two-dimensional pores in freestanding TiO2/graphene gel film for high performance lithium ion battery. J. Energy Chem. 27, 176–182 (2018)

    Article  Google Scholar 

  317. Dong, C.F., Guo, L.J., He, Y.Y., et al.: Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Energy Storage Mater. 15, 234–241 (2018)

    Article  Google Scholar 

  318. Gao, X., Wang, B.Y., Zhang, Y., et al.: Graphene-scroll-sheathed α-MnS coaxial nanocables embedded in N, S co-doped graphene foam as 3D hierarchically ordered electrodes for enhanced lithium storage. Energy Storage Mater. 16, 46–55 (2019)

    Article  Google Scholar 

  319. Gerber, O., Begin-Colin, S., Pichon, B.P., et al.: Design of Fe3-xO4 raspberry decorated graphene nanocomposites with high performances in lithium-ion battery. J. Energy Chem. 25, 272–277 (2016)

    Article  Google Scholar 

  320. Wang, L., Wei, Z.X., Mao, M.L., et al.: Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater. 16, 434–454 (2019)

    Article  Google Scholar 

  321. Li, Z.J., Kong, D.B., Zhou, G.M., et al.: Twin-functional graphene oxide: compacting with Fe2O3 into a high volumetric capacity anode for lithium ion battery. Energy Storage Mater. 6, 98–103 (2017)

    Article  CAS  Google Scholar 

  322. Zhang, D., Wang, S., Ma, Y., et al.: Two-dimensional nanosheets as building blocks to construct three-dimensional structures for lithium storage. J. Energy Chem. 27, 128–145 (2018)

    Article  Google Scholar 

  323. Odkhuu, D., Jung, D.H., Lee, H., et al.: Negatively curved carbon as the anode for lithium ion batteries. Carbon 66, 39–47 (2014)

    Article  CAS  Google Scholar 

  324. Zheng, Z.M., Zhang, X., Pei, F., et al.: Hierarchical porous carbon microrods composed of vertically aligned graphene-like nanosheets for Li-ion batteries. J. Mater. Chem. A 3, 19800–19806 (2015)

    Article  CAS  Google Scholar 

  325. Chen, X.C., Wei, W., Lv, W., et al.: A graphene-based nanostructure with expanded ion transport channels for high rate Li-ion batteries. Chem. Commun. 48, 5904–5906 (2012)

    Article  CAS  Google Scholar 

  326. Choi, S.H., Lee, J.K., Kang, Y.C.: Three-dimensional porous graphene-metal oxide composite microspheres: preparation and application in Li-ion batteries. Nano Res. 8, 1584–1594 (2015)

    Article  CAS  Google Scholar 

  327. Zhou, G.M., Li, F., Cheng, H.M.: Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014)

    Article  CAS  Google Scholar 

  328. Peng, H.J., Huang, J.Q., Cheng, X.B., et al.: Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017)

    Article  CAS  Google Scholar 

  329. Zhang, G., Zhang, Z.W., Peng, H.J., et al.: A toolbox for lithium-sulfur battery research: methods and protocols. Small Methods 1, 1700134 (2017)

    Article  CAS  Google Scholar 

  330. Huang, J.Q., Zhai, P.Y., Peng, H.J., et al.: Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. Sci. Bull. 62, 1267–1274 (2017)

    Article  CAS  Google Scholar 

  331. Peng, H.J., Huang, J.Q., Liu, X.Y., et al.: Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control. J. Am. Chem. Soc. 139, 8458–8466 (2017)

    Article  CAS  PubMed  Google Scholar 

  332. Yang, X., Li, X., Adair, K., et al.: Structural design of lithium–sulfur batteries: from fundamental research to practical application. Electrochem. Energy Rev. 1, 239–293 (2018)

    Article  Google Scholar 

  333. Ji, X., Lee, K.T., Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009)

    Article  CAS  PubMed  Google Scholar 

  334. Zhou, G.M., Li, L., Ma, C.Q., et al.: A graphene foam electrode with high sulfur loading for flexible and high energy Li–S batteries. Nano Energy 11, 356–365 (2015)

    Article  CAS  Google Scholar 

  335. Zhou, X.Y., Chen, F., Yang, J.: Core@shell sulfur@polypyrrole nanoparticles sandwiched in graphene sheets as cathode for lithium-sulfur batteries. J. Energy Chem. 24, 448–455 (2015)

    Article  Google Scholar 

  336. Zhang, H., Zhao, Z.B., Liu, Y., et al.: Nitrogen-doped hierarchical porous carbon derived from metal-organic aerogel for high performance lithium-sulfur batteries. J. Energy Chem. 26, 1282–1290 (2017)

    Article  Google Scholar 

  337. Kim, J.W., Ocon, J.D., Park, D.W., et al.: Enhanced reversible capacity of Li–S battery cathode based on graphene oxide. J. Energy Chem. 22, 336–340 (2013)

    Article  CAS  Google Scholar 

  338. Huang, J., Sun, Y., Wang, Y., et al.: Review on advanced functional separators for lithium-sulfur batteries. Acta Chim. Sinica 75, 173–188 (2017)

    Article  CAS  Google Scholar 

  339. Li, H., Yang, X., Wang, X., et al.: Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode. Nano Energy 12, 468–475 (2015)

    Article  CAS  Google Scholar 

  340. Zhou, G., Yin, L.-C., Wang, D.-W., et al.: Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 7, 5367–5375 (2013)

    Article  CAS  PubMed  Google Scholar 

  341. Zheng, J.H., Guo, G.N., Li, H.W., et al.: Elaborately designed micro-mesoporous graphitic carbon spheres as efficient polysulfide reservoir for lithium-sulfur batteries. ACS Energy Lett. 2, 1105–1114 (2017)

    Article  CAS  Google Scholar 

  342. Oschatz, M., Borchardt, L., Pinkert, K., et al.: Hierarchical carbide-derived carbon foams with advanced mesostructure as a versatile electrochemical energy-storage material. Adv. Energy Mater. 4, 1300645 (2014)

    Article  CAS  Google Scholar 

  343. Peng, H.J., Zhang, Q.: Designing host materials for sulfur cathodes: from physical confinement to surface chemistry. Angew. Chem. Int. Ed. 54, 11018–11020 (2015)

    Article  CAS  Google Scholar 

  344. Peng, H.J., Zhang, G., Chen, X., et al.: Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem. Int. Ed. 55, 12990–12995 (2016)

    Article  CAS  Google Scholar 

  345. Chen, C.Y., Peng, H.J., Hou, T.Z., et al.: A quinonoid-imine-enriched nanostructured polymer mediator for lithium-sulfur batteries. Adv. Mater. 29, 1606802 (2017)

    Article  CAS  Google Scholar 

  346. Yin, L.C., Liang, J., Zhou, G.M., et al.: Understanding the interactions between lithium polysulfides and n-doped graphene using density functional theory calculations. Nano Energy 25, 203–210 (2016)

    Article  CAS  Google Scholar 

  347. Kong, L., Li, B.Q., Peng, H.J., et al.: Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries. Adv. Energy Mater. 8, 1800849 (2018)

    Article  CAS  Google Scholar 

  348. Hou, T.Z., Xu, W.T., Chen, X., et al.: Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem. Int. Ed. 56, 8178–8182 (2017)

    Article  CAS  Google Scholar 

  349. Li, L., Zhou, G.M., Yin, L.C., et al.: Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li–S batteries. Carbon 108, 120–126 (2016)

    Article  CAS  Google Scholar 

  350. Li, B.Q., Zhang, S.Y., Kong, L., et al.: Porphyrin organic framework hollow spheres and their applications in lithium-sulfur batteries. Adv. Mater. 30, 1707483 (2018)

    Article  CAS  Google Scholar 

  351. Li, S.Y., Wang, W.P., Duan, H., et al.: Recent progress on confinement of polysulfides through physical and chemical methods. J. Energy Chem. 27, 1555–1565 (2018)

    Article  Google Scholar 

  352. Sun, Z.H., Zhang, J.Q., Yin, L.C., et al.: Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  353. Liang, J., Yin, L.C., Tang, X.N., et al.: Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium-sulfur batteries. ACS Appl. Mater. Interfaces. 8, 25193–25201 (2016)

    Article  CAS  PubMed  Google Scholar 

  354. Yuan, Z., Peng, H.J., Hou, T.Z., et al.: Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016)

    Article  CAS  PubMed  Google Scholar 

  355. Li, H.P., Sun, L.C., Zhang, Y.G., et al.: Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J. Energy Chem. 26, 1276–1281 (2017)

    Article  Google Scholar 

  356. Qin, J.L., Peng, H.J., Huang, J.Q., et al.: Solvent-engineered scalable production of polysulfide-blocking shields to enhance practical lithium-sulfur batteries. Small Methods 2, 1800100 (2018)

    Article  CAS  Google Scholar 

  357. Zhuang, T.Z., Huang, J.Q., Peng, H.J., et al.: Rational integration of polypropylene/graphene oxide/Nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries. Small 12, 381–389 (2016)

    Article  CAS  PubMed  Google Scholar 

  358. Peng, H.J., Wang, D.W., Huang, J.Q., et al.: Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries. Adv. Sci. 3, 1500268 (2016)

    Article  CAS  Google Scholar 

  359. Zhai, P.Y., Peng, H.J., Cheng, X.B., et al.: Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium-sulfur batteries. Energy Storage Mater. 7, 56–63 (2017)

    Article  Google Scholar 

  360. Zhang, X.Q., Zhao, C.Z., Huang, J.Q., et al.: Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 4, 831–847 (2018)

    Article  CAS  Google Scholar 

  361. Chen, X.R., Zhang, R., Cheng, X.B., et al.: Dendrite-free carbon/lithium metal anodes for use in flexible lithium metal batteries. New Carbon Mater. 32, 600–604 (2017)

    Google Scholar 

  362. Cheng, X.B., Yan, C., Huang, J.Q., et al.: The gap between long lifespan Li–S coin and pouch cells: the importance of lithium metal anode protection. Energy Storage Mater. 6, 18–25 (2017)

    Article  Google Scholar 

  363. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017)

    Article  CAS  PubMed  Google Scholar 

  364. Zhang, R., Li, N.W., Cheng, X.B., et al.: Advanced micro/nanostructures for lithium metal anodes. Adv. Sci. 4, 1600445 (2017)

    Article  CAS  Google Scholar 

  365. Zhang, X.Q., Cheng, X.B., Zhang, Q.: Advances in interfaces between Li metal anode and electrolyte. Adv. Mater. Interfaces 5, 1701097 (2018)

    Article  CAS  Google Scholar 

  366. Zhang, C., Huang, Z.J., Lv, W., et al.: Carbon enables the practical use of lithium metal in a battery. Carbon 123, 744–755 (2017)

    Article  CAS  Google Scholar 

  367. Zhang, R., Chen, X., Shen, X., et al.: Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–777 (2018)

    Article  CAS  Google Scholar 

  368. Deng, W., Zhu, W.H., Zhou, X.F., et al.: Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. Energy Storage Mater. 15, 266–273 (2018)

    Article  Google Scholar 

  369. Meng, Q.Q., Deng, B., Zhang, H.M., et al.: Heterogeneous nucleation and growth of electrodeposited lithium metal on the basal plane of single-layer graphene. Energy Storage Mater. 16, 419–425 (2019)

    Article  Google Scholar 

  370. Cheng, X.B., Peng, H.J., Huang, J.Q., et al.: Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium-sulfur batteries. ACS Nano 9, 6373–6382 (2015)

    Article  CAS  PubMed  Google Scholar 

  371. Zhang, R., Cheng, X.B., Zhao, C.Z., et al.: Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv. Mater. 28, 2155–2162 (2016)

    Article  CAS  PubMed  Google Scholar 

  372. Deng, W., Zhou, X.F., Fang, Q.L., et al.: Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv. Energy Mater. 8, 1703152 (2018)

    Article  CAS  Google Scholar 

  373. Lin, D.C., Liu, Y.Y., Liang, Z., et al.: Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016)

    Article  CAS  PubMed  Google Scholar 

  374. Zhang, R., Chen, X.R., Chen, X., et al.: Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768 (2017)

    Article  CAS  Google Scholar 

  375. Liu, H., Chen, X., Cheng, X.B., et al.: Uniform lithium nucleation guided by atomically dispersed lithiophilic conx sites for safe lithium metal batteries. Small Methods 2, 1800354 (2018)

    Google Scholar 

  376. Li, Y.G., Dai, H.J.: Recent advances in zinc-air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014)

    Article  CAS  PubMed  Google Scholar 

  377. Debe, M.K.: Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012)

    Article  CAS  PubMed  Google Scholar 

  378. Gong, K., Du, F., **a, Z., et al.: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009)

    Article  CAS  Google Scholar 

  379. Jeon, I.Y., Zhang, S., Zhang, L., et al.: Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. Adv. Mater. 25, 6138–6145 (2013)

    Article  CAS  PubMed  Google Scholar 

  380. Zhang, L., **a, Z.: Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115, 11170–11176 (2011)

    Article  CAS  Google Scholar 

  381. Yan, D.F., Li, Y.X., Huo, J., et al.: Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 29, 1606459 (2017)

    Article  CAS  Google Scholar 

  382. Liang, J., Du, X., Gibson, C., et al.: N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction. Adv. Mater. 25, 6226–6231 (2013)

    Article  CAS  PubMed  Google Scholar 

  383. Liang, J., Zheng, Y., Chen, J., et al.: Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem. Int. Ed. 51, 3892–3896 (2012)

    Article  CAS  Google Scholar 

  384. Liang, J., Jiao, Y., Jaroniec, M., et al.: Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51, 11496–11500 (2012)

    Article  CAS  Google Scholar 

  385. Zhang, L., Xu, Q., Niu, J., et al.: Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Phys. Chem. Chem. Phys. 17, 16733–16743 (2015)

    Article  CAS  PubMed  Google Scholar 

  386. Tao, L., Wang, Q., Dou, S., et al.: Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016)

    Article  CAS  Google Scholar 

  387. Jiang, Y., Yang, L., Sun, T., et al.: Significant contribution of intrinsic carbon defects to oxygen reduction activity. ACS Catal. 5, 6707–6712 (2015)

    Article  CAS  Google Scholar 

  388. Ito, Y., Shen, Y., Hojo, D., et al.: Correlation between chemical dopants and topological defects in catalytically active nanoporous graphene. Adv. Mater. 28, 1604318 (2016)

    Article  CAS  Google Scholar 

  389. Zhang, Z.P., Sun, J.T., Wang, F., et al.: Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework. Angew. Chem. Int. Ed. 57, 9038–9043 (2018)

    Article  CAS  Google Scholar 

  390. Wang, J.Y., Zhang, H.N., Wang, C.W., et al.: Co-synthesis of atomic Fe and few-layer graphene towards superior ORR electrocatalyst. Energy Storage Mater. 12, 1–7 (2018)

    Article  Google Scholar 

  391. Chen, X.Q., Yu, L., Wang, S.H., et al.: Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 32, 353–358 (2017)

    Article  CAS  Google Scholar 

  392. Yin, P.Q., Yao, T., Wu, Y., et al.: Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016)

    Article  CAS  Google Scholar 

  393. Song, P., Luo, M., Liu, X.Z., et al.: Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 27, 1700802 (2017)

    Article  CAS  Google Scholar 

  394. Han, Y.H., Wang, Y.G., Chen, W.X., et al.: Hollow N-doped carbon spheres with isolated cobalt single atomic sites: superior electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 139, 17269–17272 (2017)

    Article  CAS  PubMed  Google Scholar 

  395. Wang, X.X., Cullen, D.A., Pan, Y.T., et al.: Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30, 1706758 (2018)

    Article  CAS  Google Scholar 

  396. Zhang, Z.P., Dou, M.L., Liu, H.J., et al.: A facile route to bimetal and nitrogen-codoped 3D porous graphitic carbon networks for efficient oxygen reduction. Small 12, 4193–4199 (2016)

    Article  CAS  PubMed  Google Scholar 

  397. Li, Q.H., Chen, W.X., **ao, H., et al.: Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 30, 1800588 (2018)

    Article  CAS  Google Scholar 

  398. Fei, H.L., Dong, J.C., Feng, Y.X., et al.: General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Cat. 1, 63–72 (2018)

    Article  CAS  Google Scholar 

  399. Wang, X.Q., Chen, Z., Zhao, X.Y., et al.: Regulation of coordination number over single Co sites: triggering the efficient electroreduction of CO2. Angew. Chem. Int. Ed. 57, 1944–1948 (2018)

    Article  CAS  Google Scholar 

  400. Jiang, K., Siahrostami, S., Akey, A.J., et al.: Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017)

    Article  CAS  Google Scholar 

  401. Jiang, K., Siahrostami, S., Zheng, T.T., et al.: Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018)

    Article  CAS  Google Scholar 

  402. Su, X., Yang, X.F., Huang, Y., et al.: Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. (2018). https://doi.org/10.1021/acs.accounts.8b00478

    Article  PubMed  Google Scholar 

  403. Sun, T., Zhao, S., Chen, W., et al.: Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc. Natl. Acad. Sci. U.S.A. 115, 12692–12697 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Zhao, Y., Nakamura, R., Kamiya, K., et al.: Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat. Commun. 4, 2390 (2013)

    Article  PubMed  Google Scholar 

  405. Zheng, Y., Jiao, Y., Zhu, Y.H., et al.: Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014)

    Article  PubMed  Google Scholar 

  406. Zhu, Y.P., Ran, J.R., Qiao, S.Z.: Scalable self-supported graphene foam for high-performance electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces. 9, 41980–41987 (2017)

    Article  CAS  PubMed  Google Scholar 

  407. Zhao, Z.H., **a, Z.H.: Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions. ACS Catal. 6, 1553–1558 (2016)

    Article  CAS  Google Scholar 

  408. Zheng, Y., Jiao, Y., Li, L.H., et al.: Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8, 5290–5296 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Qu, K., Zheng, Y., Dai, S., et al.: Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19, 373–381 (2016)

    Article  CAS  Google Scholar 

  410. Chen, P.Z., Xu, K., Zhou, T.P., et al.: Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew. Chem. Int. Ed. 55, 2488–2492 (2016)

    Article  CAS  Google Scholar 

  411. Chen, S., Duan, J.J., Tang, Y.H., et al.: Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. Nano Energy 11, 11–18 (2015)

    Article  CAS  Google Scholar 

  412. Xue, S., Chen, L., Liu, Z.B., et al.: NiPS3 nanosheet-graphene composites as highly efficient electrocatalysts for oxygen evolution reaction. ACS Nano 12, 5297–5305 (2018)

    Article  CAS  PubMed  Google Scholar 

  413. Wang, H.F., Tang, C., Zhang, Q.: Towards superior oxygen evolution through graphene barriers between metal substrates and hydroxide catalysts. J. Mater. Chem. A 3, 16183–16189 (2015)

    Article  CAS  Google Scholar 

  414. Wang, H.L., Dai, H.J.: Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 42, 3088–3113 (2013)

    Article  CAS  PubMed  Google Scholar 

  415. Tang, C., Wang, H.F., Zhu, X.L., et al.: Advances in hybrid electrocatalysts for oxygen evolution reactions: rational integration of NiFe layered double hydroxides and nanocarbon. Part. Part. Syst. Char. 33, 473–486 (2016)

    Article  CAS  Google Scholar 

  416. Zhang, Q.F., Xu, Z., Lu, B.A.: Strongly coupled MoS2-3D graphene materials for ultrafast charge slow discharge libs and water splitting applications. Energy Storage Mater. 4, 84–91 (2016)

    Article  Google Scholar 

  417. Li, Y.G., Wang, H.L., **e, L.M., et al.: MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296–7299 (2011)

    Article  CAS  Google Scholar 

  418. Biroju, R.K., Das, D., Sharma, R., et al.: Hydrogen evolution reaction activity of graphene-MoS2 van der waals heterostructures. ACS Energy Letters 2, 1355–1361 (2017)

    Article  CAS  Google Scholar 

  419. Zheng, X.L., Xu, J.B., Yan, K.Y., et al.: Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem. Mater. 26, 2344–2353 (2014)

    Article  CAS  Google Scholar 

  420. Duan, J., Chen, S., Chambers, B.A., et al.: 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 27, 4234–4241 (2015)

    Article  CAS  PubMed  Google Scholar 

  421. Cui, X.Y., Tang, C., Zhang, Q.: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018)

    Article  CAS  Google Scholar 

  422. Guo, C., Ran, J., Vasileff, A., et al.: Rational design of electrocatalysts and photo(electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11, 45–56 (2018)

    Article  CAS  Google Scholar 

  423. Chen, J.G., Crooks, R.M., Seefeldt, L.C., et al.: Beyond fossil fuel–driven nitrogen transformations. Science 360, eaar6611 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Chen, G.F., Ren, S., Zhang, L., et al.: Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge. Small Methods 2, 1800337 (2018)

    Google Scholar 

  425. Yan, D., Li, H., Chen, C., et al.: Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2, 1800331 (2018)

    Google Scholar 

  426. Cui, X., Tang, C., Liu, X.M., et al.: Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts. Chem. Eur. J. 24, 18494 (2018)

    Article  CAS  PubMed  Google Scholar 

  427. Guo, J., Chen, P.: Catalyst: NH3 as an energy carrier. Chem 3, 709–712 (2017)

    Article  CAS  Google Scholar 

  428. Li, W., Wu, T., Zhang, S., et al.: Nitrogen-free commercial carbon cloth with rich defects for electrocatalytic ammonia synthesis under ambient conditions. Chem. Commun. 54, 11188–11191 (2018)

    Article  CAS  Google Scholar 

  429. Liu, Y., Su, Y., Quan, X., et al.: Facile ammonia synthesis from electrocatalytic N2 reduction under ambient conditions on N-doped porous carbon. ACS Catal. 8, 1186–1191 (2018)

    Article  CAS  Google Scholar 

  430. Lv, C., Qian, Y., Yan, C., et al.: Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem. Int. Ed. 57, 10246–10250 (2018)

    Article  CAS  Google Scholar 

  431. Wang, H., Wang, L., Wang, Q., et al.: Ambient electrosynthesis of ammonia: electrode porosity and composition engineering. Angew. Chem. Int. Ed. 57, 12360–12364 (2018)

    Article  CAS  Google Scholar 

  432. Yu, X., Han, P., Wei, Z., et al.: Boron-doped graphene for electrocatalytic N2 reduction. Joule 2, 1610–1622 (2018)

    Article  CAS  Google Scholar 

  433. Chen, G.F., Cao, X.R., Wu, S.Q., et al.: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139, 9771–9774 (2017)

    Article  CAS  PubMed  Google Scholar 

  434. Mukherjee, S., Cullen, D.A., Karakalos, S., et al.: Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 48, 217–226 (2018)

    Article  CAS  Google Scholar 

  435. Song, Y., Johnson, D., Peng, R., et al.: A physical catalyst for the electrolysis of nitrogen to ammonia. Sci. Adv. 4, e1700336 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Geng, Z., Liu, Y., Kong, X., et al.: Achieving a record-high yield rate of 120.9 μgNH3 mg −1cat h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 30, 1803498 (2018)

    Article  CAS  Google Scholar 

  437. Tao, H., Choi, C., Ding, L.X., et al.: Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem. 5, 204–214 (2019)

    Article  CAS  Google Scholar 

  438. Wang, X., Wang, W., Qiao, M., et al.: Atomically dispersed Au catalyst towards efficient electrochemical synthesis of ammonia. Sci. Bull. 63, 1246–1253 (2018)

    Article  CAS  Google Scholar 

  439. Qin, Q., Heil, T., Antonietti, M., et al.: Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2, 1800202 (2018)

    Article  CAS  Google Scholar 

  440. Shi, M.M., Bao, D., Li, S.J., et al.: Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 8, 1800124 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program (2016YFA0202500 and 2016YFA0200102) and the National Natural Science Foundation of China (21676160, 21825501, and U1801257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, C., Wang, HF., Huang, JQ. et al. 3D Hierarchical Porous Graphene-Based Energy Materials: Synthesis, Functionalization, and Application in Energy Storage and Conversion. Electrochem. Energ. Rev. 2, 332–371 (2019). https://doi.org/10.1007/s41918-019-00033-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00033-7

Keywords

Navigation