Log in

Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The use of new three-dimensional (3D) porous graphene-metal oxide composite microspheres as an anode material for Li-ion batteries (LIBs) is first introduced here. 3D graphene microspheres are aggregates of individual hollow graphene nanospheres composed of graphene sheets. Metal oxide nanocrystals are uniformly distributed over the graphene surface of the microspheres. The 3D porous graphene-SnO2 microspheres are selected as the first target material for investigation because of their superior electrochemical properties. The 3D porous graphene-SnO2 and graphene microspheres and bare SnO2 powders deliver discharge capacities of 1,009, 196, and 52 mAh·g−1, respectively, after 500 cycles at a current density of 2 A·g−1. The 3D porous graphene-SnO2 microspheres exhibit uniquely low charge transfer resistances and high Li-ion diffusivities before and after cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

    Article  Google Scholar 

  2. Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.

    Article  Google Scholar 

  3. Guo, S. J.; Dong, S. J. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644–2672.

    Article  Google Scholar 

  4. Liu, Y. X.; Dong, X. C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307.

    Article  Google Scholar 

  5. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

    Article  Google Scholar 

  6. Wu, Z.-S.; Zhou, G. M.; Yin, L.-C.; Ren, W.-C.; Li, F.; Cheng, H.-M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

    Article  Google Scholar 

  7. Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 2014, 26, 2185–2204.

    Article  Google Scholar 

  8. Armstrong, M. J.; O’Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

    Article  Google Scholar 

  9. Leng, K.; Zhang, F.; Zhang, L.; Zhang, T. F.; Wu, Y. P.; Lu, Y. H.; Huang, Y.; Chen, Y. S. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res. 2013, 6, 581–592.

    Article  Google Scholar 

  10. Huang, X. D.; Qian, K.; Yang, J.; Zhang, J.; Li, L.; Yu, C. Z.; Zhao, D. Y. Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater. 2012, 24, 4419–4423.

    Article  Google Scholar 

  11. Luo, J. Y.; Jang, H. D.; Sun, T.; **ao, L.; He, Z.; Katsoulidis, A. P.; Kanatzidis, M. G.; Gibson, J. M.; Huang, J. X. Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 2011, 5, 8943–8949.

    Article  Google Scholar 

  12. Mao, S.; Wen, Z. H.; Kim, H. J.; Lu, G. H.; Hurley, P.; Chen, J. H. A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications. ACS Nano 2012, 6, 7505–7513.

    Article  Google Scholar 

  13. Chen, Y. T.; Guo, F.; Jachak, A.; Kim, S.-P.; Datta, D.; Liu, J. Y.; Kulaots, I.; Vaslet, C.; Jang, H. D.; Huang, J. X. et al. Aerosol synthesis of cargo-filled graphene nanosacks. Nano Lett. 2012, 12, 1996–2002.

    Article  Google Scholar 

  14. Choi, B. G.; Yang, M. H.; Hong, W. H.; Choi, J. W.; Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012, 6, 4020–4028.

    Article  Google Scholar 

  15. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H.-M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  Google Scholar 

  16. Li, C.; Shi, G. Q. Three-dimensional graphene architectures. Nanoscale 2012, 4, 5549–5563.

    Article  Google Scholar 

  17. Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163–3168.

    Article  Google Scholar 

  18. Yoon, J.-C.; Lee, J.-S.; Kim, S.-I.; Kim, K.-H.; Jang, J.-H. Three-dimensional graphene nano-networks with high quality and mass production capability via precursor-assisted chemical vapor deposition. Sci. Rep. 2013, 3, 1788.

    Google Scholar 

  19. **e, X.; Yu, G. H.; Liu, N.; Bao, Z. N.; Criddle, C. S.; Cui, Y. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci. 2012, 5, 6862–6866.

    Article  Google Scholar 

  20. Sohn, K.; Na, Y. J.; Chang, H.; Roh, K. M.; Jang, H. D.; Huang, J. X. Oil absorbing graphene capsules by capillary molding. Chem. Commun. 2012, 8, 5968–5970.

    Article  Google Scholar 

  21. He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; **e, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182.

    Article  Google Scholar 

  22. Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.

    Article  Google Scholar 

  23. Dong, X. C.; Cao, Y. F.; Wang, J.; Chan-Park, M. B.; Wang, L. H.; Huang, W.; Chen, P. Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2012, 2, 4364–4369.

    Article  Google Scholar 

  24. Wang, X. B.; Zhang, Y. J.; Zhi, C. Y.; Wang, X.; Tang, D. M.; Xu, Y. B.; Weng, Q. H.; Jiang, X. F.; Mitome, M.; Golberg, D. et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Comm. 2013, 4, 2905.

    Google Scholar 

  25. Xu, Z. W.; Li, Z.; Holt, C. M. B.; Tan, X. H.; Wang, H. L.; Amirkhiz, B. S.; Stephenson, T.; Mitlin, D. Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J. Phys. Chem. Lett. 2012, 3, 2928–2933.

    Article  Google Scholar 

  26. Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909–2914.

    Article  Google Scholar 

  27. Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136–6143.

    Article  Google Scholar 

  28. Cao, X. H.; Shi, Y. M.; Shi, W. H.; Rui, X. H.; Yan, Q. Y.; Kong, J.; Zhang, H. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 2013, 9, 3433–3438.

    Article  Google Scholar 

  29. Huang, X.; Yu, H.; Chen, J.; Lu, Z. Y.; Yazami, R.; Hng, H. H. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration. Adv. Mater. 2014, 26, 1296–1303.

    Article  Google Scholar 

  30. Liu, X. W.; Cheng, J. X.; Li, W. H.; Zhong, X. W.; Yang, Z. Z.; Gu, L.; Yu, Y. Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite. Nanoscale 2014, 6, 7817–7822.

    Article  Google Scholar 

  31. Zhu, J. X.; Yang, D.; Rui, X. H.; Sim, D. H.; Yu, H.; Hoster, H. E.; Ajayan, P. M.; Yan, Q. Y. Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance. Small 2013, 9, 3390–3397.

    Article  Google Scholar 

  32. Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem. Int. Ed. 2014, 53, 1404–1409.

    Article  Google Scholar 

  33. Ji, J. Y.; Ji, H. X.; Zhang, L. L.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithiumion batteries. Adv. Mater. 2013, 25, 4673–4677.

    Article  Google Scholar 

  34. Li, N.; Chen, Z. P.; Ren, W. C.; Li, F.; Cheng, H.-M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17360–17365.

    Article  Google Scholar 

  35. Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 2013, 25, 3979–3984.

    Article  Google Scholar 

  36. Chen, W. F.; Li, S. R.; Chen, C. H.; Yan, L. F. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 2011, 23, 5679–5683.

    Article  Google Scholar 

  37. Huang, X. D.; Sun, B.; Chen, S. Q.; Wang, G. X. Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors. Chem.-Asian J. 2014, 9, 206–211.

    Article  Google Scholar 

  38. **ao, L.; Wu, D. Q.; Han, S.; Huang, Y. S.; Li, S.; He, M. Z.; Zhang, F.; Feng, X. L. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl. Mater. Interfaces 2013, 5, 3764–3769.

    Article  Google Scholar 

  39. Nardecchia, S.; Carriazo, D.; Ferrer, M. L.; Gutiérrez, M. C.; del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chem. Soc. Rev. 2013, 42, 794–830.

    Article  Google Scholar 

  40. Choi, S. H.; Kang, Y. C. Crumpled graphene-molybdenum oxide composite powders: Preparation and application in lithium-ion batteries. ChemSusChem 2014, 7, 523–528.

    Article  Google Scholar 

  41. Zhang, T. Y.; Li, X. Q.; Kang, S. Z.; Qin, L. X.; Yan, W. F.; Mu, J. Facile assembly and properties of polystyrene microsphere/reduced graphene oxide/Ag composite. J. Colloid Interface Sci. 2013, 402, 279–283.

    Article  Google Scholar 

  42. Zhang, W. L.; Liu, Y. D.; Choi, H. J. Graphene oxide coated core-shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. J. Mater. Chem. 2011, 21, 6916–6921.

    Article  Google Scholar 

  43. Zhou, X. S.; Wan, L.-J.; Guo, Y.-G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152–2157.

    Article  Google Scholar 

  44. Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

    Article  Google Scholar 

  45. Kim, T. Y.; Kang, H. C.; Tung, T. T.; Lee, J. D.; Kim, H. K.; Yang, W. S.; Yoon, H. G.; Suh, K. S. Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors. RSC Adv. 2012, 2, 8808–8812.

    Article  Google Scholar 

  46. Seema, H.; Kemp, K. C.; Chandra, V.; Kim, K. S. Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology 2012, 23, 355705.

    Article  Google Scholar 

  47. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

    Article  Google Scholar 

  48. Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 2010, 114, 21770–21774.

    Article  Google Scholar 

  49. Li, L.; Kovalchuk, A.; Tour, J. M. SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 2014, 7, 1319–1326.

    Article  Google Scholar 

  50. Lin, J.; Peng, Z. W.; **ang, C. S.; Ruan, G. D.; Yan, Z.; Natelson, D.; Tour, J. M. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001–6006.

    Article  Google Scholar 

  51. Zhang, C. F.; Peng, X.; Guo, Z. P.; Cai, C. B.; Chen, Z. X.; Wexler, D.; Li, S. A.; Liu, H. K. Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 2012, 50, 1897–1903.

    Article  Google Scholar 

  52. Huang, Y. S.; Wu, D. Q.; Wang, J. Z.; Han, S.; Lv, L.; Zhang, F.; Feng, X. L. Amphiphilic polymer promoted assembly of macroporous graphene/SnO2 frameworks with tunable porosity for high-performance lithium storage. Small 2014, 10, 2226–2232.

    Article  Google Scholar 

  53. Lee, C. W.; Seo, S.-D.; Kim, D. W.; Park, S.; **, K.; Kim, D.-W.; Hong, K. S. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 2013, 6, 348–355.

    Article  Google Scholar 

  54. Lee, C. W.; Seo, S. D.; Kim, D. W.; Park, S.; **, K.; Kim, D. W.; Hong, K. S. Heteroepitaxial Growth of ZnO Nanosheet Bands on ZnCo2O4 Submicron Rods Toward High-Performance Li Ion Battery Electrodes. Nano Res. 2013, 6, 348–355.

    Article  Google Scholar 

  55. **ang, H. F.; Li, Z. D.; **e, K.; Jiang, J. Z.; Chen, J. J.; Lian, P. C.; Wu, J. S.; Yu, Y.; Wang, H. H. Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv. 2012, 2, 6792–6799.

    Article  Google Scholar 

  56. Yang, J.; Liao, Q. C.; Zhou, X. Y.; Liu, X. J.; Tang, J. J. Efficient synthesis of graphene-based powder via in situ spray pyrolysis and its application in lithium ion batteries. RSC Adv. 2013, 3, 16449–16455.

    Article  Google Scholar 

  57. Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116–1127.

    Article  Google Scholar 

  58. Choi, S. H.; Kang, Y. C. Using simple spray pyrolysis to prepare yolk-shell-structured ZnO-Mn3O4 systems with the optimum composition for superior electrochemical properties. Chem.-Eur. J. 2014, 20, 3014–3018.

    Article  Google Scholar 

  59. Wang, D. N.; Yang, J. L.; Li, X. F.; Geng, D. S.; Li, R. Y.; Cai, M.; Sham, T.-K.; Sun, X. L. Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ. Sci. 2013, 6, 2900–2906.

    Article  Google Scholar 

  60. Wang, D. N.; Li, X. F.; Wang, J. J.; Yang, J. L.; Geng, D. S.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L. Defect-rich crystalline SnO2 immobilized on graphene nanosheets with enhanced cycle performance for Li ion batteries. J. Phys. Chem. C 2012, 116, 22149–22156.

    Article  Google Scholar 

  61. Zhou, G. M.; Wang, D.-W.; Yin, L.-C.; Li, N.; Li, F.; Cheng, H.-M. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6, 3214–3223.

    Article  Google Scholar 

  62. Choi, S. H.; Kang, Y. C. Yolk-shell, hollow, and single-crystalline ZnCo2O4 powders: Preparation using a simple one-pot process and application in lithium-ion batteries. ChemSusChem 2013, 6, 2111–2116.

    Article  Google Scholar 

  63. Park, M.-S.; Kang, Y.-M.; Wang, G.-X.; Dou, S.-X.; Liu, H.-K. The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 2008, 18, 455–461.

    Article  Google Scholar 

  64. Ko, Y. N.; Park, S. B.; Jung, K. Y.; Kang, Y. C. One-pot facile synthesis of ant-cave-structured metal oxide-carbon microballs by continuous process for use as anode materials in Li-ion batteries. Nano Lett. 2013, 13, 5462–5466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Kul Lee or Yun Chan Kang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S.H., Lee, JK. & Kang, Y.C. Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries. Nano Res. 8, 1584–1594 (2015). https://doi.org/10.1007/s12274-014-0646-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0646-1

Keywords

Navigation