Log in

Study of SrLa0.04Fe1.96O4/polyaniline composites for improving microwave absorption

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

A Correction to this article was published on 23 January 2024

This article has been updated

Abstract

The most recent techniques for enhancing microwave absorbance applications employing composites based on spinel family modified polymers (polyaniline) are covered in this article. Sol–gel synthesis is used to generate the conductive polymer, which closely combines with strontium-based ferrites (SrLa0.04Fe1.96O4/PANI). X-ray diffraction (XRD) study unequivocally confirmed the spinel structure and phase formation of the ferrite nanoparticles. With an estimated crystallite size of between 23 and 72 nm, XRD examination proved both phases were present in composites. Dielectric parameters (i.e., constant and loss) show a decreasing trend with the mixing of ferrite/PANI composites. As the value of frequency rises, the sudden fall in dielectric curves occurs and remains the same at higher frequencies. The VSM analysis showed that there were magnetic nanoparticles and that the polyaniline matrix was ferromagnetic. The nanoparticles in the PANI matrix stop the mechanism for conduction from working. This makes the activation energy and resistivity go up. Because FP4 is a ferromagnetic material, these ferrite/PANI alloys may be a good choice for absorbing microwaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Change history

References

  1. Sha, L., Gao, P., Wu, T., Chen, Y.: Chemical Ni–C bonding in Ni–carbon nanotube composite by a microwave welding method and its induced high-frequency radar frequency electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 40412–40419 (2017)

    Article  CAS  Google Scholar 

  2. Alenad, A.M., Ahmad, N., Aman, S., Saeed, M.N., Farid, H.M.T., Taha, T.A.M.: Engineering of the crystalline state towards a defective state of CeCoO3 perovskite for the OER process in alkaline medium. Journal of Taibah University for Science 17, 1 (2023). https://doi.org/10.1080/16583655.2023.2231132

    Article  Google Scholar 

  3. Aman, S. , Elsaeedy, H.I., Alharbi, F.F., Ejaz, S.R., Ahmad, N., Zeshan, M., Ali, M., Tahir Farid, H.M., Synthesis of composites and their characterization for high-frequency applications. Inorg Chem Commun 156, 2023, 111188

  4. Trukhanov, S. V., Trukhanov, A. V., Kostishyn, V. G., Panina, L. V., Trukhanov, A. V., Turchenko, V. A,...& Matzui, L. Y. (2017). Investigation into the structural features and microwave absorption of doped barium hexaferrites. Dalton Transactions, 46(28), 9010–9021

  5. Aman, S., Ahmad, N. Study of Rare-Earth Metal (Dy)-Substituted Barium-Based Spinel Ferrites for Microwave Applications. JOM (2023). https://doi.org/10.1007/s11837-023-06092-y

  6. Trukhanov, A. V., Astapovich, K. A., Almessiere, M. A., Turchenko, V. A., Trukhanova, E. L., Korovushkin, V. V., ... & Trukhanov, S. V. (2020). Pecularities of the magnetic structure and microwave properties in Ba (Fe1-xScx) 12O19 (x< 0.1) hexaferrites. Journal of Alloys and Compounds, 822, 153575.

  7. Aman, S., Tahir, M.B., Ahmad, N.: Study of Europium substituted spinel ferrites for microwave devices. J Mater Sci: Mater Electron 33, 21995–22006 (2022). https://doi.org/10.1007/s10854-022-08990-4

    Article  CAS  Google Scholar 

  8. Gupta, S., Tai, N.H.: Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152, 159–187 (2019)

    Article  CAS  Google Scholar 

  9. Aman, S., Ahmad, N., Ejaz, S.A., AlObaid, A.A., Al-Muhimeed, T.I., Rehman, A., Hegazy, H.H., Rauf Khan, A., Ejaz, S.R., Tahir Farid, H.M.: The study of holmium substituted spinel ferrites for high frequency applications. Journal of Taibah University for Science 16(1), 463–471 (2023). https://doi.org/10.1080/16583655.2021.1988440

    Article  Google Scholar 

  10. Alburaih, H.A., Khan, S.A., Khosa, R.Y., et al.: The electrical, dielectric and magnetic effect of MgFe2O4–polypyrrole and its composites. J Korean Ceram Soc 60, 357–363 (2023). https://doi.org/10.1007/s43207-022-00270-5

    Article  CAS  Google Scholar 

  11. Hirohata, A., Yamada, K., Nakatani, Y., Prejbeanu, I.L., Diény, B., Pirro, P., Hillebrands, B.: Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020)

    Article  CAS  Google Scholar 

  12. Almessiere, M.A., Slimani, Y., Güngüneş, H., Kostishyn, V.G., Trukhanov, S.V., Trukhanov, A.V., Baykal, A.: Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram. Int. 46(8), 11124–11131 (2020)

    Article  CAS  Google Scholar 

  13. Peymanfar, R., Javidan, A., Javanshir, S.: Preparation and investigation of structural, magnetic, and microwave absorption properties of aluminum-doped strontium ferrite/MWCNT/polyaniline nanocomposite at KU-band frequency. J. Appl. Polym. Sci. 134(30), 45135 (2017)

    Article  Google Scholar 

  14. Trukhanov, A. V., Darwish, M. A., Panina, L. V., Morchenko, A. T., Kostishyn, V. G., Turchenko, V. A., ... & Trukhanov, S. V. (2019). Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x≤ 2) in the wide temperature range. Journal of Alloys and Compounds, 791, 522–529.

  15. Ramay, S.M., Mahmood, A., Alzayed, N.S., et al.: Structural and magnetic properties of praseodymium substituted strontium-based spinel ferrites. J. Mater. Sci. Mater. Electron. 28, 18656–18665 (2017)

    Article  CAS  Google Scholar 

  16. Hashim, M., Shirsath, S. E., Meena, S. S., Kotnala, R. K., Kumar, S., Bhatt, P., ...& Kumar, R. (2013). Study of structural and magnetic properties of (Co–Cu) Fe2O4/PANI composites. Materials Chemistry and Physics, 141(1), 406-415.

  17. Khairy, M., Gouda, M.E.: Electrical and optical properties of nickel ferrite/polyaniline nanocomposite. J. Adv. Res. 6(4), 555–562 (2015)

    Article  CAS  Google Scholar 

  18. Suthar, M., Roy, P.K.: Structural, electromagnetic, and Ku-band absorption characterization of La-Mg substituted Y-type barium hexaferrite for EMI shielding application. Mater. Sci. Eng., B 283, 115801 (2022)

    Article  CAS  Google Scholar 

  19. Aman, S., Alharbi, F., Gouadria, S., et al.: Lanthanum substituted barium spinel ferrites, enhancement in various properties nanocrystalline ferrites. J Mater Sci: Mater Electron 34, 596 (2023). https://doi.org/10.1007/s10854-023-09990-8

    Article  CAS  Google Scholar 

  20. Yasmin, N., Abdulsatar, S., Hashim, M., Zahid, M., Gillani, S. F., Kalsoom, A., ...&Mirza, M. (2019). Structural and magnetic studies of Ce-Mn doped M-type SrFe12O19 hexagonal ferrites by sol-gel auto-combustion method. Journal of Magnetism and Magnetic Materials, 473, 464–469.

  21. Khirade, P.P., Birajdar, S.D., Raut, A.V., Jadhav, K.M.: Effect of Fe–substitution on phase transformation, optical, electrical and dielectrical properties of BaTiO3 nanoceramics synthesized by sol-gel auto combustion method. J. Electroceram. 37(1), 110–120 (2016)

    Article  CAS  Google Scholar 

  22. Aman, S., Ahmad, N., Tahir, M.B., et al.: Enhanced electrical and magnetic properties of samarium substituted spinel ferrites. J Electroceram 50, 50–56 (2023). https://doi.org/10.1007/s10832-023-00304-2

    Article  CAS  Google Scholar 

  23. Pervaiz, E., Gul, I.H.: High frequency AC response, DC resistivity and magnetic studies of holmium substituted Ni-ferrite: a novel electromagnetic material. J. Magn. Magn. Mater. 349, 27–34 (2014)

    Article  CAS  Google Scholar 

  24. Ahmad, M., Ali, Q., Ali, I., Ahmad, I., Azhar Khan, M., Akhtar, M.N., Murtaza, G., Rana, M.U.: Effects of Sr-substitution on the structural and magnetic behavior of Ba-based Y-type hexagonal ferrites. J. Alloys Compd. 580, 23–28 (2013)

    Article  CAS  Google Scholar 

  25. Ajmal, M., Islam, M.U., Ali, A.: Structural, electrical and dielectric properties of Hexa-ferrite-polyaniline nano-composites. J. Supercond. Nov. Magn. 31, 1375–1382 (2018)

    Article  CAS  Google Scholar 

  26. Choudhury, A.: Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sensors Actuators B Chem. 138(1), 318–325 (2009)

    Article  CAS  Google Scholar 

  27. Aman, S., Ahmad, N., Almutairi, B.S., et al.: Study of Gadolinium Substituted Barium-Based Spinel Ferrites for Microwave Applications. J Electron Mater 52, 4149–4161 (2023). https://doi.org/10.1007/s11664-023-10396-9

    Article  CAS  Google Scholar 

  28. Ajmal, M., Islam, M.U., Ashraf, G.A., Nazir, M.A., Ghouri, M.I.: The influence of Ga do** on structural magnetic and dielectric properties of NiCr 0.2 Fe 1.8 O 4 spinel ferrite. Phys. B. Condens. Matter. 526, 149 (2017)

    Article  CAS  Google Scholar 

  29. Batool, S.R., Malana, M.A., Alfryyan, N., et al.: Synthesis, characterization, dielectric and magnetic properties of substituted Y-type hexaferrites. J Mater Sci: Mater Electron 33, 16183–16196 (2022). https://doi.org/10.1007/s10854-022-08508-y

    Article  CAS  Google Scholar 

  30. Aphesteguy, J.C., Jacobo, S.E.: Synthesis of a soluble polyaniline–ferrite composite: magnetic and electric properties. J. Mater. Sci. 42(17), 7062–7068 (2007)

    Article  CAS  Google Scholar 

  31. Kumar, S., Kumar, P., Gupta, R., Verma, V.: Electromagnetic interference shielding behaviors of in-situ polymerized ferrite-polyaniline nano-composites and ferrite-polyaniline deposited fabrics in X-band frequency range. J. Alloy. Compd. 862, 158331 (2021)

    Article  CAS  Google Scholar 

  32. Sattar, A.A., El-Sayed, H.M., El-Shokofy, K.M., El-Tabey, M.M.: Improvement of the magnetic properties of Mn-Ni-Zn ferrite by the non-magnetic Al3+-ion substitution. J. App. Sci. 5(1), 162–168 (2005)

    Article  Google Scholar 

  33. Sharma, U.S., Shah, R.: Study of polyaniline coated CuFe2O4 nanoparticles and their application in biosensor. AIP Conf. Proc. 1728, 020275 (2016)

    Article  Google Scholar 

  34. Tawfk, A., Hemeda, O.M., Henaish, A.M.A., Dorgham, A.M.: High piezoelectric properties of modified nano lead titanatezirconate ceramics. Mater. Chem. Phys. 211, 1–8 (2018)

    Article  Google Scholar 

  35. Alharbi, F.F., Aman, S., Ahmad, N., et al.: Eu–Co substituted Sr-hexaferrites for recording media and microwave devices. J Mater Sci: Mater Electron 33, 12147–12156 (2022). https://doi.org/10.1007/s10854-022-08175-z

    Article  CAS  Google Scholar 

  36. Kenyon, W.E.: Texture effects on megahertz dielectric properties of calcite rock samples. J. Appl. Phys. 55(8), 3153–3159 (1984)

    Article  Google Scholar 

  37. Afandiyeva, I.M., Dökme, İL.B.İL.G.E., Altındal, Ş, Bülbül, M.M., Tataroğlu, A.D.E.M.: Frequency and voltage effects on the dielectric properties and electrical conductivity of Al–TiW–Pd2Si/n-Si structures. Microelectron. Eng. 85(2), 247–252 (2008)

    Article  CAS  Google Scholar 

  38. Gopakumar, D. A., Pai, A. R., Pottathara, Y. B., Pasquini, D., Carlos de Morais, L., Luke, M., ... & Thomas, S. (2018). Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X-band. ACS applied materials & interfaces, 10(23), 20032–20043.

  39. Köseoğlu, Y., Bay, M., Tan, M., Baykal, A., Sözeri, H., Topkaya, R., Akdoğan, N.: Magnetic and dielectric properties of Mn0. 2Ni0. 8Fe2O4 nanoparticles synthesized by PEG-assisted hydrothermal method. J. Nanoparticle. Res. 13(5), 2235–2244 (2011)

    Article  Google Scholar 

  40. Argall, F., Jonscher, A.K.: Dielectric properties of thin films of aluminium oxide and silicon oxide. Thin. Solid. Films 2(3), 185–210 (1968)

    Article  CAS  Google Scholar 

  41. Xu, S.-H., Feng, D.-L., Li, D.-X., et al.: Preparation of magnetic photocatalyst TiO2 supported on NiFe2O4 and effect of magnetic carrier on photocatalytic activity. Chin. J. Chem. 26, 842–846 (2008)

    Article  CAS  Google Scholar 

  42. Arasi, S., Antony, R.V., Joseph, M.: Impact of dysprosium (Dy3+) do** on size, optical and dielectric properties of titanium dioxide nanoparticles grown by low temperature hydrothermal method. J. Mater. Sci. Mater. Electron. 29, 3170–3177 (2017)

    Article  Google Scholar 

  43. Munir, S., Ahmad, I., Laref, A., Farid, M.T.: Effect of Nd-substitution on hexagonal ferrites for memory devices. J. Appl. Phys. A Mater. Sci. Process. 126, 722 (2020)

    Article  CAS  Google Scholar 

  44. Iftikhar, A., Yousaf, S., Ahmed, A.F.A., et al.: Erbium-substituted Ni0.4Co0.6Fe2O4 ferrite nanoparticles and their hybrids with reduced graphene oxide as magnetically separable powder photocatalyst. Ceram. Int. 46(1), 1203–1210 (2020)

    Article  Google Scholar 

  45. Haque, M.M., Huq, M., Hakim, M.A.: Effect of Zn2+ substitution on the magnetic properties of Mg1− xZnxFe2O4 ferrites. Physica B 404(21), 3915–3921 (2009)

    Article  Google Scholar 

  46. Nikumbh, A.K., Pawar, R.A., Nighot, D.V., Gugale, G.S., Sangale, M.D., Khanvilkar, M.B., Nagawade, A.V.: Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J. Magn. Magn. Mater. 355, 201–209 (2014)

    Article  CAS  Google Scholar 

  47. Farid, M.T., Ahmad, I., Kanwal, M., Murtaza, G., Hussain, M., Khan, S.A., Ali, I.: Synthesis, electrical and magnetic properties of Pr-substituted Mn ferrites for high-frequency applications. J. Electron. Mater. 46, 1826–1835 (2017)

    Article  CAS  Google Scholar 

  48. Bauer, A., Neubauer, A., Franz, C., Münzer, W., Garst, M., Pfleiderer, C.: Quantum phase transitions in single-crystal Mn 1–x Fe x Si and Mn 1–x Co x Si: crystal growth, magnetization, ac susceptibility, and specific heat. Phys. Rev. B 82(6), 064404 (2010)

    Article  Google Scholar 

  49. Ishikawa, J.J., O’Farrell, E.C., Nakatsuji, S.: Continuous transition between antiferromagnetic insulator and paramagnetic metal in the pyrochlore iridate Eu 2 Ir 2 O 7. Phys. Rev. B 85(24), 245109 (2012)

    Article  Google Scholar 

  50. Aman, S., Ahmad, N., Alhossainy, M.H., Albalawi, H., Morsi, M., Al-Muhimeed, T. I., AlObaid, A.A., Structural magnetic electrical and microwave properties of spinel ferrites. J Rare Earths. 40(3), 443–450 (2022). https://doi.org/10.1016/j.jre.2021.04.015

  51. Shinde, T.J., Gadkari, A.B., Vasambekar, P.N.: Magnetic properties and cation distribution study of nanocrystalline Ni–Zn ferrites. J. Magn. Magn. Mater. 333, 152–155 (2013)

    Article  CAS  Google Scholar 

  52. Butt, K.Y., Aman, S., AlObaid, A.A., et al.: The study of structural, magnetic and dielectric properties of spinel ferrites for microwave absorption applications. Appl Phys A 127, 714 (2021). https://doi.org/10.1007/s00339-021-04827-9

    Article  CAS  Google Scholar 

  53. Lide, D.R.: Magnetic susceptibility of the elements and inorganic compounds. Handbook of Chemistry and Physics (CRC, Boca Raton (2005)

    Google Scholar 

  54. Qindeel, R., Alonizan, N.H., Bousiakou, L.G.: Magnetic behavior of ferrite-polymer composites for hyperthermia applications. J. Mater. Sci.: Mater. Electron. 31, 19672–19679 (2020)

    Google Scholar 

  55. Abbas, S.M., Dixit, A.K., Chatterjee, R., Goel, T.C.: Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites. J. Magn. Magn. Mater. 309(1), 20–24 (2007)

    Article  CAS  Google Scholar 

  56. Mitchell, J., Chandrasekera, T.C., Johns, M.L., Gladden, L.F., Fordham, E.J.: Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients: the effect of magnetic field strength. Phys. Rev. E 81(2), 026101 (2010)

    Article  CAS  Google Scholar 

  57. Alam, R.S., Moradi, M., Nikmanesh, H., Ventura, J., Rostami, M.: Magnetic and microwave absorption properties of BaMgx/2Mnx/2CoxTi2xFe12− 4xO19 hexaferrite nanoparticles. J. Magn. Magn. Mater. 402, 20–27 (2016)

    Article  Google Scholar 

  58. Yu, X., Mostovoy, M., Tokunaga, Y., Zhang, W., Kimoto, K., Matsui, Y., ... & Tokura, Y. (2012). Magnetic stripes and skyrmions with helicity reversals. Proceedings of the National Academy of Sciences, 109(23), 8856–8860.

  59. Gupta, N., Dimri, M.C., Kashyap, S.C., Dube, D.C.: Processing and properties of cobalt-substituted lithium ferrite in the GHz frequency range. Ceram. Int. 31, 171–176 (2005)

    Article  CAS  Google Scholar 

  60. Saini, M., Shukla, R., Kumar, A.: Cd2+ substituted nickel ferrite doped polyaniline nanocomposites as effective shield against electromagnetic radiation in X-band frequency. J. Magn. Magn. Mater. 491, 165549 (2019)

    Article  CAS  Google Scholar 

  61. Flaifel, M.H., Ahmad, S.H., Abdullah, M.H., Rasid, R., Shaari, A.H., El-Saleh, A.A., Appadu, S.: Preparation, thermal, magnetic and microwave absorption properties of thermoplastic natural rubber matrix impregnated with NiZn ferrite nanoparticles. Compos. Sci. Technol. 96, 103–108 (2014)

    Article  CAS  Google Scholar 

  62. Aman, S., Gouadria, S., Ahmad, N., Khan, S.A., Manzoor, S., Farid, H.M.T.: The structural, dielectric and magnetic study of cobalt based spinel ferrites and polypyrrole composites. J. Mater. Sci.: Mater. Electron. 33(24), 19534–19543 (2022)

    CAS  Google Scholar 

  63. Shah, M.S., Aman, S., Ahmad, N., Tahir, M.B., Alrowaili, Z.A., Al-Buriahi, M.S., Farid, H.M.T., Khosa, R.Y., Hussein, E.E., Elnaggar, A.Y., El-Bahy, Z.M.: The Evaluation of Structural, Electrical and Magnetic Properties of Samarium substituted Spinel Ferrites, Journal of Taibah University for. Science 15(1), 798–804 (2021). https://doi.org/10.1080/16583655.2021.2005321

    Article  Google Scholar 

  64. Aziz, B., Shakoor, A., Qureshi, A.K., Ali, K., Niaz, N.A., Farid, M.T., Ali, I.: Structural, electrical, and magnetic properties of ferrite–polymer composites. J. Electron. Mater. 47(11), 6437–6442 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Researchers Supporting Project number (RSP2023R33), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equal contributions.

Corresponding authors

Correspondence to Mohd Zahid Ansari or Hafiz Muhammad Tahir Farid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeshan, M., Alharbi, F.F., Sherif, ES.M. et al. Study of SrLa0.04Fe1.96O4/polyaniline composites for improving microwave absorption. J Aust Ceram Soc 60, 89–101 (2024). https://doi.org/10.1007/s41779-023-00955-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-023-00955-y

Keywords

Navigation