Log in

Simulation and photoelectron track reconstruction of soft X-ray polarimeter

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The soft X-ray polarimeter (SXP) is a detector with a wide energy range, large area, and large field of view. A SXP will be mounted on the Chinese Space Station and will mainly focus on detecting the polarization of transient soft X-ray (2–10 keV) sources, especially gamma-ray bursts (GRBs). In this work, a polarimeter detector unit is taken as an example, and Geant4 and Garfield++ software are used to simulate the detection efficiency and track production. An improved track reconstruction algorithm is proposed and used to reconstruct two-dimensional images of the tracks. In this method, the initial emission angle of photoelectrons is reconstructed from the initial part of the track by shortening or extending the initial part of the track until the remaining track is straight, and the number of pixels is within an adjustable threshold. The modulation factor of the photoelectronic tracks after reconstruction reaches approximately 57% in the photon energy range of 7–10 keV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Kestenbaum, G. Cohen, K. Long et al., The graphite crystal X-ray spectrometer on OSO-8. Astrophys. J. 210, 805–809 (1976). https://doi.org/10.1086/154889

    Article  ADS  Google Scholar 

  2. E. Costa, P. Soffitta, R. Bellazzini et al., An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars. Nature 411, 662–665 (2001). https://doi.org/10.1038/35079508

    Article  ADS  Google Scholar 

  3. M.C. Weisskopf, B. Ramsey, S.L. O’Dell et al., The imaging X-ray polarimetry explorer (IXPE). Results Phys. 6, 1179–1180 (2016). https://doi.org/10.1117/12.2235240

    Article  ADS  Google Scholar 

  4. S. Zhang, A. Santangelo, M. Feroci et al., The enhanced x-ray timing and polarimetry mission-extp. Sci. China Phys. Mech. Astron. 62, 29502 (2019). https://doi.org/10.1007/s11433-018-9309-2

    Article  ADS  Google Scholar 

  5. P. Soffitta, X.I.P.E collaboration, et al., XIPE, the x-ray imaging polarimetry explorer: opening a new window in the X-ray sky. Nucl. Instrum. Methods Phys. Res. Sect. A 873, 21–23 (2017). https://doi.org/10.1016/j.nima.2017.02.025

  6. W. Iwakiri, J. Black, R. Cole et al., Performance of the praxys X-ray polarimeter. Nucl. Instrum. Methods Phys. Res. Sect. A 838, 89–95 (2016). https://doi.org/10.1016/j.nima.2016.09.024

    Article  ADS  Google Scholar 

  7. H. Feng, H. Li, X. Long et al., Re-detection and a possible time variation of soft X-ray polarization from the crab. Nature Astron. 4, 511–516 (2020). https://doi.org/10.1038/s41550-020-1088-1

    Article  ADS  Google Scholar 

  8. C. Ilie, Gamma-ray polarimetry: A new window for the nonthermal universe. Publ. Astron. Soc. Pac. 131, 111001 (2019). https://doi.org/10.1088/1538-3873/ab2a3a

    Article  ADS  Google Scholar 

  9. R. Bellazzini, A. Brez, E. Costa et al., Photoelectric X-ray polarimetry with gas pixel detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 720, 173–177 (2013). https://doi.org/10.1016/j.nima.2012.12.006

    Article  ADS  Google Scholar 

  10. F. Muleri, P. Soffitta, L. Baldini et al., Spectral and polarimetric characterization of the gas pixel detector filled with dimethyl ether. Nucl. Instrum. Methods Phys. Res. Sect. A 620, 285–293 (2010). https://doi.org/10.1016/j.nima.2010.03.006

    Article  ADS  Google Scholar 

  11. T. Li, M. Zeng, H. Feng et al., Electron track reconstruction and improved modulation for photoelectric X-ray polarimetry. Nucl. Instrum. Methods Phys. Res. Sect. A 858, 62–68 (2017). https://doi.org/10.1016/j.nima.2017.03.050

    Article  ADS  Google Scholar 

  12. T. Kitaguchi, K. Black, T. Enoto et al., An optimized photoelectron track reconstruction method for photoelectric X-ray polarimeters. Nucl. Instrum. Methods Phys. Res. Sect. A 880, 188–193 (2018). https://doi.org/10.1016/j.nima.2017.10.070

    Article  ADS  Google Scholar 

  13. F. Sauli, Gem: a new concept for electron amplification in gas detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 386, 531–534 (1997). https://doi.org/10.1016/S0168-9002(96)01172-2

    Article  ADS  Google Scholar 

  14. R. Chechik, A. Breskin, C. Shalem et al., Thick gem-like hole multipliers: properties and possible applications. Nucl. Instrum. Methods Phys. Res. Sect. A 535, 303–308 (2004). https://doi.org/10.1016/j.nima.2004.07.138

    Article  ADS  Google Scholar 

  15. M. An, C. Chen, C. Gao et al., A low-noise CMOS pixel direct charge sensor, topmetal-II. Nucl. Instrum. Methods Phys. Res. Sect. A 810, 144–150 (2016). https://doi.org/10.1016/j.nima.2015.11.153

    Article  ADS  Google Scholar 

  16. J. Cooper, Photoelectron-angular-distribution parameters for rare-gas subshells. Phys. Rev. A 47, 1841 (1993). https://doi.org/10.1103/PhysRevA.47.1841

    Article  ADS  Google Scholar 

  17. Q. Liu, H. Liu, S. Chen et al., A successful application of thinner-thgems. J. Instrum. 8, C11008 (2013). https://doi.org/10.1088/1748-0221/8/11/C11008

    Article  Google Scholar 

  18. H.B. Liu, Y.H. Zheng, Y.G. **e et al., The performance of thinner-thgem. Nucl. Instrum. Methods Phys. Res. Sect. A 659, 237–241 (2011). https://doi.org/10.1016/j.nima.2011.09.010

    Article  ADS  Google Scholar 

  19. H.B. Liu, Y.H. Zheng, Y.G. **e et al., Study of the thgem detector with a reflective CSI photocathode. Chin. Phys. C 35, 363 (2011). https://doi.org/10.1088/1674-1137/35/4/008

    Article  ADS  Google Scholar 

  20. H.B. Liu, Q. Liu, S. Chen et al., A study of thinner-thgem, with some applications. J. Instrum. 7, C06001 (2012). https://doi.org/10.1088/1748-0221/7/06/C06001

    Article  Google Scholar 

  21. S. Agostinelli, J. Allison, K.A. Amako et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A. Detect. Assoc. Equip. 506, 250–303 https://doi.org/10.1016/S0168-9002(03)01368-8

  22. R. Veenhof, Garfield, recent developments. Nucl. Instrum. Methods Phys. Res. Sect. A 419, 726–730 (1998). https://doi.org/10.1016/S0168-9002(98)00851-1

    Article  ADS  Google Scholar 

  23. C. Multiphysics, The platform for physics-based modeling and simulation. http://www.comsol.com/comsol-multiphysics

  24. R. Bellazzini, G. Spandre, Photoelectric Polarimeters. X-Ray Polarimetry: A New Window in Astrophysics, 19th edn. (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  25. D. Pfeiffer, L. De Keukeleere, C. Azevedo et al., Interfacing geant4, garfield++ and degrad for the simulation of gaseous detectors. Nucl. Instrum. Methods Phys. Res. Sect. A 935, 121–134 (2019). https://doi.org/10.1016/j.nima.2019.04.110

    Article  ADS  Google Scholar 

  26. M. Gavrila, Relativistic k-shell photoeffect. Phys. Rev. 113, 514 (1959). https://doi.org/10.1103/PhysRev.113.514

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Xue-Feng Huang, ** Zhang, Huan-Bo Feng, and **-Chen Cai. The first draft of the manuscript was written by Xue-Feng Huang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xue-Feng Huang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. U1731239, 12027803, 11851304, U1938201, 11575193, and U1732266), the Guangxi Science Foundation (Nos. 2018GXNSFGA281007, 2017AD22006, 2018JJA110048), and Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW368 SLH039)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XF., Liu, HB., Zhang, J. et al. Simulation and photoelectron track reconstruction of soft X-ray polarimeter. NUCL SCI TECH 32, 67 (2021). https://doi.org/10.1007/s41365-021-00903-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00903-0

Keywords

Navigation