Introduction to Photoelectric X-ray Polarimeters

  • Reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics
  • 40 Accesses

Abstract

X-ray astronomy has been impaired by the lack of access to the unique information contained in the polarization of X-rays emitted by celestial sources, due largely to the insufficient sensitivity of available polarimeters. However, a new generation of polarization-sensitive instruments, developed over the last 20 years and employing micro-pattern gaseous detectors (MPGDs), has demonstrated unprecedented sensitivity that has made X-ray polarimetry a practical astronomical tool. These polarimeters exploit the photoelectric effect, which is both the dominant interaction mechanism for soft X-rays and an ideal polarization analyzer. As the result of photoionization of an atom, the photoelectron is emitted preferentially in the direction of the electric field of the ionizing X-ray. MPGD-based polarimeters form two-dimensional images of such photoelectron tracks with pixel sizes that are small compared to the track length. From these images, the angle of emission, and hence the state of polarization, is estimated for each event. The energy of each X-ray is also measured with typical proportional counter energy resolution. Some implementations also provide focal plane imaging. Here, we discuss in general how MPGD-based polarimeters meet the demanding requirements of X-ray astronomy by efficiently exploiting the polarization sensitivity of the photoelectric effect. In the two chapters that follow, we describe in more detail the two basic implementations, the gas pixel detector (GPD) and the time-projection chamber (TPC) polarimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • J.R. Angel, R. Novick, P. vanden Bout, R. Wolff, Search for X-ray polarization in Sco X-1. Astron. J. 22, 861–865 (1969)

    Google Scholar 

  • R.A. Austin, B.D. Ramsey, Optical imaging chamber for X-ray astronomy. Opt. Eng. 32, 1990–1994 (1993)

    Article  ADS  Google Scholar 

  • J.K. Black, R.G. Baker, P. Deines-Jones et al., X-ray polarimetry with a micropattern TPC. Nucl. Instrum. Methods A 581, 755–760 (2007). https://doi.org/10.1016/j.nima.2007.08.144

    Article  ADS  Google Scholar 

  • E. Costa, P. Soffitta, R. Bellazzini et al., An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars. Nature 411, 662–665 (2001). https://doi.org/10.1038/35079508

    Article  ADS  Google Scholar 

  • M. Gavrila, Relativistic L-shell photoeffect. Phys. Rev. 124, 1132–1141 (1961). https://doi.org/10.1103/PhysRev.124.1132

    Article  ADS  Google Scholar 

  • R.E. Griffiths, B.A. Cooke, A. Peacock, K.A. Pounds, M.J. Ricketts, The Leicester X-ray crystal spectrometer on Ariel V and some early results on Cas A, Tycho and Sco X-1. MNRAS 175, 449–460 (1976)

    Article  ADS  Google Scholar 

  • P. Kaaret, R. Novick, P. Shaw, S. Hanany, Y. Liu, J.R. Fleischman, R. Sunyaev, I.Y. Lapshov, M.C. Weisskopf, R.F. Elsner, B.D. Ramsey, E.H. Silver, K.P. Ziock, E. Costa, L. Piro, P. Soffitta, G. Manzo, S. Giarrusso, A. Santangelo, L. Scarsi, G.W. Fraser, J.F. Pearson, J.E. Lees, G.C. Perola, E. Massaro, G. Matt, Status of the Stellar X-Ray Polarimeter for the Spectrum-X-Gamma Mission, ed. by D.P. Simmons. Production and Analysis of Polarized X Rays, SPIE Conference Series, vol. 1548, pp. 106–117 (1991). https://doi.org/10.1117/12.50577

  • F. Kislat, B. Clark, M. Beilicke, H. Krawczynski, Analyzing the data from X-ray polarimeters with Stokes parameters. Astropart. Phys. 68, 45–51 (2015). https://doi.org/10.1016/j.astropartphys.2015.02.007

    Article  ADS  Google Scholar 

  • T. Kitaguchi, K. Black, T. Enoto, Y. Fukazawa, A. Hayato, J.E. Hill, W.B. Iwakiri, K. Jahoda, P. Kaaret, R. McCurdy, T. Mizuno, T. Nakano, T. Tamagawa, An optimized photoelectron track reconstruction method for photoelectric X-ray polarimeters. Nucl. Instrum. Methods A 880, 188–193 (2018). https://doi.org/10.1016/j.nima.2017.10.070

    Article  ADS  Google Scholar 

  • T. Kitaguchi,K. Black, T. Enoto, A. Hayato, J.E. Hill, W.B. Iwakiri, P. Kaaret, T. Mizuno, T. Tamagawa, A convolutional neural network approach for reconstructing polarization information of photoelectric X-ray polarimeters. Nucl. Instrum. Methods A 942, 162389 (2019). https://doi.org/10.1016/j.nima.2019.162389

    Article  Google Scholar 

  • T. Li, M. Zeng, H. Feng, J. Cang, H. Li, H. Zhang, Z. Zeng, J. Cheng, H. Ma, Y. Liu, Electron track reconstruction and improved modulation for photoelectric X-ray polarimetry. Nucl. Instrum. Methods A 858, 62–68 (2017). https://doi.org/10.1016/j.nima.2017.03.050

    Article  ADS  Google Scholar 

  • C.J. Martoff, D.P. Snowden-Ifft, T. Ohnuki et al., Suppressing drift chamber diffusion without magnetic field. Nucl. Instrum. Methods A 440, 355–359 (2000). https://doi.org/10.1016/S0168-9002(99)00955-9

    Article  ADS  Google Scholar 

  • F. Muleri, Expectations and Perspectives of X-ray Photoelectric Polarimetry, PhD Dissertation, University of Rome Tor Vergata, 2009

    Google Scholar 

  • R. Novick, Stellar and solar X-ray polarimetry. Space Sci. Rev. 18, 389–408 (1975)

    Article  ADS  Google Scholar 

  • R. Novick, M.C. Weisskopf, R. Berthelsdorf, R. Linke, R.S. Wolff, Detection of X-ray polarization of the Crab Nebula. Astrophys. J. Lett. 174, L1 (1972)

    Article  ADS  Google Scholar 

  • A.L. Peirson, R.W. Romani, H.L. Marshall, J.F. Steiner, L. Baldini, Deep ensemble analysis for imaging X-ray polarimetry. Nucl. Instrum. Methods A 986, 164740 (2021). https://doi.org/10.1016/j.nima.2020.164740

    Article  Google Scholar 

  • F. Sauli, Micro-Pattern Gaseous Detectors (World Scientific, 2020). https://doi.org/10.1142/11882

    Book  Google Scholar 

  • T.E. Strohmayer, T.R. Kallman, On the statistical analysis of X-ray polarization measurements. Astrophys. J. 773, 103 (2013). https://doi.org/10.1088/0004-637x/773/2/103

    Article  ADS  Google Scholar 

  • M.C. Weisskopf, H. Silver, H.L. Kestenbaum, K.S. Long, R. Novick, R.S. Wolff, Search for X-ray polarization in Cygnus X-1. Astrophys. J. Lett. 215, L65–68 (1977)

    Article  ADS  Google Scholar 

  • M.C. Weisskopf, R.F. Elsner, S.L. O’Dell, On understanding the figures of merit for detection and measurement of x-ray polarization, Proc. SPIE 7732 (2010). https://doi.org/10.1117/12.857357

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Black .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Black, K., Costa, E., Soffitta, P., Zajczyk, A. (2024). Introduction to Photoelectric X-ray Polarimeters. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-19-6960-7_172

Download citation

Publish with us

Policies and ethics

Navigation