Log in

Experimental methods in corrosion research

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

Experimental procedures for investigation of both thermodynamic and kinetic as well as mechanistic aspects of corrosion of metals are described and illustrated with practical examples. Particular attention is paid to electrochemical procedures also suitable for determining relative stability of materials, annual loss of material, efficiency of corrosion inhibitors and influence of numerous environmental effects preferably in situ, in vitro and even in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Frequently the part „solution“ is omitted because the writer assumes this to be not necessary. Molten salts, solid electrolytes and more recently ionic liquids suggest otherwise, consequently in this text solution is used.

  2. The frequently elsewhere imprecise use of the term „reversible electrode potential“ is in most cases correct here.

  3. For some methods popular names and/or acronyms are widespread, but there appears to be no standardization.

  4. Elsewhere this electrode potential is sometimes also called breakdown potential.

  5. WIRON99 and N/P2 are names of commercial alloys and protected trademarks. Details on the alloys are provided in the quoted references.

  6. ηct is the charge transfer overpotential whereas η is the total overpotential, i.e. the difference between the rest potential and the electrode potential actually established at the working electrode: η = E – E0. Only η can be adjusted experimentally by setting E.

  7. The part·dec−1 is frequently omitted.

  8. The slope must be a positive value, the popular semilogarithmic display may erroneously suggest otherwise.

  9. Because rather small currents will be measured the capacitive current component must be kept in mind. At slow scan rates this (charging) double layer current becomes smaller and causes a smaller error.

  10. In battery studies frequently the cell impedance is measured with the complete battery, i.e. in a two electrode arrangement. Unfortunately in subsequent evaluation the interpretation suggests that only an electrode impedance has been measured, i.e. one electrode impedance is completely ignored.

  11. In his original report Randles assigned a series connection of Rr und C r to the electrode reaction in the equivalent circuit, this was later simplified into the charge transfer resistance Rct.

References

  1. DIN 50900, p 11

  2. Kaesche H (1990) Die Korrosion der Metalle, 3rd edn. Springer, Berlin

    Google Scholar 

  3. Kaesche H (2003) Corrosion of metals. Springer, Berlin

    Book  Google Scholar 

  4. Kelly RG, Scully JR, Shoesmith DW, Buchheit RG (2003) Electrochemical techniques in corrosion science and engineering. Marcel Dekker, New York

    Google Scholar 

  5. Groysman A (2010) Corrosion for everybody. Springer, Dordrecht

    Book  Google Scholar 

  6. Roberge PR (2008) Corrosion Engineering principles and practice. McGraw Hill, New York

    Google Scholar 

  7. Revie RW, Uhlig HH (eds) (2000) Uhlig’s corrosion handbook. Wiley, New York

    Google Scholar 

  8. Perez N (2004) Electrochemistry and corrosion science. Kluwer Academic Publisher, New York

    Book  Google Scholar 

  9. Revie RW, Uhlig HH (2008) Corrosion and corrosion control. Wiley, Hoboken

    Book  Google Scholar 

  10. Roberge PR (2006) Corrosion basics: an introduction, 2rd edn. NACE International, Houston

    Google Scholar 

  11. APV-Corrosion Handbook (2008) APV, Getzville

  12. Roberge PR (2007) Corrosion inspection and monitoring. Wiley, Hoboken

    Book  Google Scholar 

  13. Talbot D, Talbot J (1998) Corrosion science and technology. CRC Press, Boca Raton

    Google Scholar 

  14. ASTM G5–94 (2011) Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements, ASTM International. West Conshohocken, USA

    Google Scholar 

  15. see also: DIN EN ISO 10271

  16. Holze R (2009) Experimental electrochemistry: a laboratory textbook. VCH-Wiley, Weinheim

    Google Scholar 

  17. Schmitt G (1991) Corrosion 47:285–308

    Article  CAS  Google Scholar 

  18. Küster W, Schlerkmann H, Schmitt G, Schwenk W, Steinmetz D (1984) Werkst Korros 35:556–565

    Article  Google Scholar 

  19. Schlerkmann H (1993) Werkst Korros 44:280–280

    Google Scholar 

  20. Waldman J (2015) Rust—The Longest War. Simon&Schuster, New York

    Google Scholar 

  21. Pourbaix M (1966) Atlas of Electrochemical Equilibria in Aqueous Solutions (CEBELCOR Ed.). Pergamon Press, Brussels

    Google Scholar 

  22. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston

    Google Scholar 

  23. Delahay P, Pourbaix M, Van Rysselberghe P (1951) J Electrochem Soc 98:101–105

    Article  CAS  Google Scholar 

  24. Pourbaix M (1976) J Electrochem Soc 123:25C-36C

    Article  Google Scholar 

  25. Townsend HE (1970) Corr Sci 10:343–358

    Article  CAS  Google Scholar 

  26. Bodsworth C (1994) The extraction and refining of metals. CRC Press, Boca Raton

    Google Scholar 

  27. Holze R (2009) Surface and interface analysis: an electrochemists toolbox. Springer, Heidelberg

    Google Scholar 

  28. Bardwell JA, Sproule GI, Mitchell DF, MacDougall B, Graham MJ (1991) J Chem Soc Faraday Trans 87:1011–1019

    Article  CAS  Google Scholar 

  29. Bardwell JA, Sproule GI, Graham MJ (1993) J Electrochem Soc 140:50–53

    Article  CAS  Google Scholar 

  30. Younis AA, El-Sabbah MMB, Holze R (2012) J Solid State Electrochem 16:1033–1040

    Article  CAS  Google Scholar 

  31. Hollingsworth EH, Hunsicker HY (1987) In metals handbook: corrosion. 13: American Society for Metals Metals Park, Ohio, pp 583–609

    Google Scholar 

  32. Fusayama K, Katayori T, Nomoto S (1963) J Dent Res 42:1183–1197

    Article  CAS  Google Scholar 

  33. Meyer JM, Nally JN (1975) J Dent Res 54:678–678 Abstract No. 76

    Google Scholar 

  34. Westerhoff B, Darwish M, Holze R (1992) J Appl Electrochem 22:1142–1146

    Article  CAS  Google Scholar 

  35. Mülders C, Darwish M, Holze R (1996) J Oral Rehab 23:825–831

    Article  Google Scholar 

  36. Darwish M, Mülders C, Holze R (1996) Dtsch Zahnärztl Z 51:101–105

    CAS  Google Scholar 

  37. Westerhoff B, Darwish M, Holze R (1995) J Oral Rehabil 22:121–127

    Article  CAS  Google Scholar 

  38. Kunzmann D, Döring H, Rahm E, Holze R (2005) CLB Chemie in Labor Biotechnik 56:58–69

    CAS  Google Scholar 

  39. Klostermann A, Kunzmann D, Döring H, Rahm E, Holze R (2006) In: Guth U, Vonau W (eds) Elektrochemische Grundlagenforschung und deren Anwendung in der Elektroanalytik (Proceedings of ELACH7). KSI, Waldheim, p. 53–56

  40. Kunzmann D, Rahm E, Holze R, Darwish M (2002) In: Russow J, Schäfer HJ (eds) GDCh-Monographie GDCh., Frankfurt 23:377–378

  41. Mülders C (1989) PhD-Dissertation. Universität Bonn

  42. Geis-Gerstorfer J, Weber H (1987) Dtsch Zahnärztl Z 42:91–97

    CAS  Google Scholar 

  43. for experimental details see: Holze R (2009) Experimental electrochemistry: a laboratory textbook. VCH-Wiley, Weinheim

    Google Scholar 

  44. MacDougall B, Bardwell JA (1988) Corrosion 44:789–791

    Article  CAS  Google Scholar 

  45. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

  46. Southampton Electrochemistry Group (2001) Instrumental methods in electrochemistry. Horwood Publishing Limited, Chichester

    Google Scholar 

  47. Bard AJ, Inzelt G, Scholz F (2012) Electrochemical dictionary. Springer, Heidelberg

    Book  Google Scholar 

  48. Tafel J (1905) Z phys Chem 50:641–712

    CAS  Google Scholar 

  49. Stern M, Geary AL (1957) J Electrochem Soc 105:56–63

    Article  Google Scholar 

  50. Stern M (1958) Corrosion 14:60–64

    Article  Google Scholar 

  51. Lasia A (2014) Electrochemical impedance spectroscopy and its applications. Springer, New York

    Book  Google Scholar 

  52. Holze R (1994) Bull Electrochem 10:56–67

    CAS  Google Scholar 

  53. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. WILEY-Interscience, Hoboken

    Book  Google Scholar 

  54. Holze R (1983) PhD-Dissertation. Universität Bonn

  55. Wabner DW, Holze R, Schmittinger P (1984) Z Naturf B 39:157–162

    Article  Google Scholar 

  56. Randles JEB (1947) Faraday discuss.1: pp 11–19

  57. Liu Y, Wiek A, Dzhagan V, Holze R (2016) J Electrochem Soc 163:A1247-A1253

    Google Scholar 

  58. Yan J, Fan ZJ, Wei T, Qian WZ, Zhang ML, Wei F (2010) Carbon 48:3825–3833

    Article  CAS  Google Scholar 

  59. Cottis R, Turgoose S (1999) Electrochemical impedance and noise. NACE International, Houston

    Google Scholar 

  60. Kearns JR, Scully JR, Roberge PR, Reichert DL, Dawson JL (1996) Electrochemical noise measurement for corrosion applications. ASTM International, West Conshohocken, USA

    Book  Google Scholar 

  61. McIntyre JDE (1973) In: Delahay P, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering vol 9. Wiley. New York, pp 61–166

    Google Scholar 

  62. Kolb DM (1988) In: Gale RJ (ed) Spectroelectrochemistry. Plenum Press, New York, pp 87–188

    Chapter  Google Scholar 

  63. Plieth W (1990) In: Gutiérrez C, Melendres C (eds) Spectroscopic and Diffraction Techniques in Interfacial Electrochemistry NATO ASI Series C, vol 320. Kluwer Academic Publishers, Dordrecht, pp 223–260

    Chapter  Google Scholar 

  64. Gutierrez C (1990) In: Gutiérrez C, Melendres C (eds) Spectroscopic and diffraction techniques in interfacial electrochemistry NATO ASI series C, vol 320. Kluwer Academic Publishers, Dordrecht, pp 261–279

    Chapter  Google Scholar 

  65. Castelli RA, Persans PD, Strohmayer W, Parkinson V (2007) Corr Sci 49:4396–4414

    Article  CAS  Google Scholar 

  66. Johnson CM, Leygraf C (2006) J Electrochem Soc 153:B547-B550

    Article  CAS  Google Scholar 

  67. Öhman M, Persson D (2007) Electrochim Acta 52:5159–5171

    Article  CAS  Google Scholar 

  68. Melendres CA (1990) In: Gutiérrez C, Melendres C (eds) Spectroscopic and diffraction techniques in interfacial electrochemistry NATO ASI Series C, vol 320. Kluwer Academic Publishers, Dordrecht, pp 181–222

    Chapter  Google Scholar 

  69. Simard S, Odziemkowski MS, Irish DE, Brossard L, Menard H (2001) J Appl Electrochem 31:913–920

    Article  CAS  Google Scholar 

  70. Lee CT, Odziemkowski MS, Shoesmith DW (2006) J Electrochem Soc 153:B33-B41

    Google Scholar 

  71. Odziemkowski M, Flis J, Irish DE (1994) Electrochim Acta 39:2225–2236

    Article  CAS  Google Scholar 

  72. Magnus Johnsson C, Tyrode E, Leygraf C (2006) J Electrochem Soc 153:B113-B120

    Google Scholar 

  73. Lützenkirchen-Hecht D, Frahm R (2001) J Phys Chem B 105:9988–9993

    Article  CAS  Google Scholar 

  74. Long GG, Kruger J (1991) In: Varma R, Selman JR (eds) Techniques for Characterization of Electrodes and Electrochemical Processes. Wiley, New York, USA, p. 167–209

  75. Forsberg J, Duda LC, Olsson A, Schmitt T, Andersson J, Nordgren J, Hedberg J, Leygraf C, Aastrup T, Wallinder D, Guo JH (2007) Rev Sci Instrum 78:83110

    Article  CAS  Google Scholar 

  76. Rohwerder M, Turcu F (2007) Electrochim Acta 53:290–299

    Article  CAS  Google Scholar 

  77. Mansikkamäki K, Ahonen P, Fabricius G, Murtomäli L, Kontturi K (2005) J Electrochem Soc 152:B12-B16

    Article  CAS  Google Scholar 

  78. Mansikkamäki K, Haapanen U, Johans C, Konturri K, Valden M (2006) J Electrochem Soc 153:B311-B318

    Google Scholar 

  79. Paik CH, White HS, Alkire RC (2000) J Electrochem Soc 147:4120–4124

    Article  CAS  Google Scholar 

  80. Ogle K, Baudu V, Garrigues L, Philippe X (2000) J Electrochem Soc 147:3654–3660

    Article  CAS  Google Scholar 

  81. Ogle K, Morel S, Jacquet D (2006) J Electrochem Soc 153:B1-B5

    Article  CAS  Google Scholar 

  82. Schneider O, Ilevbare GO, Kelly RG, Scully JR (2007) J Electrochem Soc 154:C397-C410

    Google Scholar 

  83. Buttry DA, Ward MD (1992) Chem Rev 92:1355–1379

    Article  CAS  Google Scholar 

  84. Sabatani E, Ticianelli E, Redondo A, Rubinstein I, Rishpon J, Gottesfeld (1993) S Synth Met 55:1293–1298

    Article  CAS  Google Scholar 

  85. Chlistunoff J, Cliffel D, Bard AJ (1995) Thin Sol Films 257:166–184

    Article  CAS  Google Scholar 

  86. Grygar T, Marken F, Schroder U, Scholz F (2002) Coll Czech Chem Commun 67:163–208

    Article  CAS  Google Scholar 

  87. Wehrensdijksma M, Notten PHL (2006) Electrochim Acta 51:3609–3621

    Article  CAS  Google Scholar 

  88. Broch L, Johann L, Stein N, Zimmer A, Beck R (2007) Rev Sci Instrum 78:064101

    Article  CAS  Google Scholar 

  89. Costa D, Garrain PA, Baaden M (2013) J Biom Mater Res 101A:1210–1222

    Article  CAS  Google Scholar 

  90. Jevremović I, Singer M, Nešić S, Mišković-Stanković V (2016) Mater Corros 67:756–768

    Article  CAS  Google Scholar 

  91. Alonso C, Casero E, Roman E, Campos SFP, de Mele MFL (2016) Electrochim Acta 189:54–63

    Article  CAS  Google Scholar 

  92. Collazo A, Figueroa R, Novoa XR, Perez C (2016) Electrochim Acta 202:288–298

    Article  CAS  Google Scholar 

  93. Tian H, Cheng YF (2016) Corrosion 72:472–485

    Google Scholar 

  94. Royce BSH, Voss D, Bocarsley A (1983) J Phys 44:C6-325

    Google Scholar 

  95. Abrantes LM, Peter LM (1983) J Electroanal Chem 150:593–601

    Article  CAS  Google Scholar 

  96. Buchanan JS, Peter LM (1988) Electrochim Acta 33:127–136

    Article  CAS  Google Scholar 

  97. Dornhege M, Punckt C, Hudson JL, Rotermund HH (2007) J Electrochem Soc 154:C24-C27

    Article  CAS  Google Scholar 

  98. De Marco R, Jiang ZT, Pejcic B, Poinen E (2005) J Electrochem Soc 152:B389-B392

    Article  CAS  Google Scholar 

  99. Osterwalder J (2012) In: Wandelt K (ed) Surface and interface science vol 1. Wiley-VCH, Weinheim, pp 151–214

    Google Scholar 

  100. Jablonski A, Powell CJ (2012) In: Wandelt K (ed), Surface interface science 2:Wiley-VCH, Weinheim, 215–252

    Google Scholar 

  101. Younis AA, Ensinger W, El-Sabbah MMB, Holze R (2013) Mater Corr 64:276–283

    CAS  Google Scholar 

  102. Sager RE, Hibbs AD, Kumar S (1992) IEEE Trans Magn 28:3072–3077

    Article  Google Scholar 

  103. Hibbs AD (1992) J Electrochem Soc 139:2447–2457

    Article  CAS  Google Scholar 

  104. Ma YP, Wiksow JP, Samuleviciene M, Leinartras K, Juzeliunas E (2002) J Phys Chem B 106:12549–12555

    Article  CAS  Google Scholar 

  105. Bellingham JG, MacVicar MLA, Nisenoff M, Searson PC (1986) J Electrochem Soc 133:1753–1754

    Article  CAS  Google Scholar 

  106. Juzeliunas E, Hinken JH (2000) Electrochim Acta 45:3453–3459

    Article  CAS  Google Scholar 

  107. Juzeliunas E, Samuleviciene M, Sudavicius A, Hinken JH (2000) Electrochem Solid State Lett 3:24–27

    Article  CAS  Google Scholar 

  108. Juzeliunas E, Hinken JH (1999) J Electroanal Chem 477:171–177

    Article  CAS  Google Scholar 

  109. Andrieu C, Dalard F, Rameau JJ, Alcouffe F, Reboul M (1998) J Mater Sci 33:3177–3181

    Article  CAS  Google Scholar 

  110. Abedi A, Fellenstein JJ, Lucas AJ, Wikswo JP Jr (1999) Rev Sci Instrum 70:4640–4651

    Article  CAS  Google Scholar 

  111. Li D, Ma YP, Flanagan WF, Lichter BD, Wikswo JP Jr (1997) Corrosion 53:93–98

    Article  CAS  Google Scholar 

  112. Hibbs AD, Saeger RE, Cox DW, Aukerman TH, Sage TA, Landis RS (1992) Rev Sci Instrum 63:3652–3658

    Article  Google Scholar 

  113. Bellingham JG, MacVicar MLA, Nisenoff M (1987) IEEE Trans Magn 23:477–485

    Article  Google Scholar 

  114. Li D, Ma YP, Flanagan WF, Lichter BD, Wikswo JP Jr (1995) J Miner Metals Mater 47:36–39

    Article  CAS  Google Scholar 

  115. Li D, Ma YP, Flanagan WF, Lichter BD, Wikswo JP Jr (1996) Corrosion 52:219–231

    Article  CAS  Google Scholar 

  116. Skennerton G, Abedi A, Kelly RG, Wikswo JP Jr (2000) J Corros Sci Eng 3:Paper 2

  117. Richter H, Knecht A (1997) Materialprüfung 39:390–396

    CAS  Google Scholar 

Download references

Acknowledgements

Preparation of this report has been supported in various ways by the Alexander von Humboldt-Foundation, Deutscher Akademischer Austauschdienst, Fonds der Chemischen Industrie, Deutsche Forschungsgemeinschaft, National Basic Research Program of China, and Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Holze.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 508 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**e, X., Holze, R. Experimental methods in corrosion research. ChemTexts 4, 5 (2018). https://doi.org/10.1007/s40828-018-0057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-018-0057-0

Keywords

Navigation