Log in

Resolved CFD–DEM simulation on hydrodynamic bridging in a bend rectangle channel

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The plugging phenomena of particle–fluid two-phase flow systems are omnipresent in industrial processes, usually causing negative consequences. To study the mechanism of bridging in the bend rectangle channels, based on the theory of solid–liquid flow, a resolved Computational Fluid Dynamics and Discrete Element Method (CFD–DEM) is proposed for simulating the dynamic bridging process of particles. The resolved CFD–DEM model is verified by theoretical formula and experimental results from the literature, and its fitness increases the credibility and applicability. The criterion of critical particle concentration is also developed to quantitatively evaluate the impacts of particle density, channel geometry and fluid dynamic viscosity on bridging capacity, and several conclusions are derived under varied parameters. The dominant influencing factor on the plugging efficiency shifts from the particle velocity to the drag force acting on the particle with the increase in the dynamic viscosity. It is shown that the method is used intuitively and accurately for describing the hydrodynamic bridging phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Mondal S (2013) Flow of particulate suspensions through constrictions : multi-particle effects. Dissertation, The University of Texas at Austin

  2. Liu AJ, Nagel SR (1998) Jamming is not just cool any more. Nature 396:21–22. https://doi.org/10.1038/23819

    Article  Google Scholar 

  3. Alsaba MT, Nygaard R, Hareland G, Contreras O (2014) Review of lost circulation materials and treatments with an updated classification. In: American Association of Drilling Engineers (AADE) National Technical Conference and Exhibition, Houston, Texas, USA, pp 15–16

  4. Lavrov A (2016) Lost circulation: mechanisms and solutions. Gulf Professional Publishing, Oxford

    Google Scholar 

  5. Sharp KV, Adrian RJ (2001) Shear-induced arching of particle-laden flows in microtubes. In: 2001 ASME international mechanical engineering congress and exposition, New York, USA, pp 553–557

  6. Sharp KV (2002) Experimental investigation of liquid and particle-laden flows in microtubes. Dissertation, University of Illinois at Urbana-Champaign

  7. Sharp KV, Adrian RJ (2005) On flow-blocking particle structures in microtubes. Microfluid Nanofluid 1:376–380. https://doi.org/10.1007/s10404-005-0043-x

    Article  Google Scholar 

  8. Kaushal DR, Tomita Y (2003) Comparative study of pressure drop in multisized particulate slurry flow through pipe and rectangular duct. Int J Multiph Flow 29:1473–1487. https://doi.org/10.1016/S0301-9322(03)00125-3

    Article  MATH  Google Scholar 

  9. Valdes JR, Santamarina JC (2006) Particle clogging in radial flow: microscale mechanisms. SPE J 11:193–198. https://doi.org/10.2118/88819-PA

    Article  Google Scholar 

  10. Dai J, Grace JR (2010) Blockage of constrictions by particles in fluid–solid transport. Int J Multiph Flow 36:78–87. https://doi.org/10.1016/j.ijmultiphaseflow.2009.08.001

    Article  Google Scholar 

  11. Lafond PG, Gilmer MW, Koh CA et al (2013) Orifice jamming of fluid-driven granular flow. Phys Rev E 87:042204. https://doi.org/10.1103/PhysRevE.87.042204

  12. Guariguata A, Pascall MA, Gilmer MW et al (2012) Jamming of particles in a two-dimensional fluid-driven flow. Phys Rev E 86:061311. https://doi.org/10.1103/PhysRevE.86.061311

    Article  Google Scholar 

  13. Jeennakorn M, Nygaard R, Nes O-M, Saasen A (2017) Testing conditions make a difference when testing LCM. J Nat Gas Sci Eng 46:375–386. https://doi.org/10.1016/j.jngse.2017.08.003

    Article  Google Scholar 

  14. Mondal S, Wu C-H, Sharma MM (2016) Coupled CFD–DEM simulation of hydrodynamic bridging at constrictions. Int J Multiph Flow 84:245–263. https://doi.org/10.1016/j.ijmultiphaseflow.2016.05.001

    Article  MathSciNet  Google Scholar 

  15. Yang X, Chen S, Shi Y et al (2019) CFD and DEM modelling of particles plugging in shale pores. Energy 174:1026–1038. https://doi.org/10.1016/j.energy.2019.03.050

    Article  Google Scholar 

  16. Zhu B, Tang H, Wang X et al (2020) Coupled CFD–DEM simulation of granular LCM bridging in a fracture. Part Sci Technol 38:371–380. https://doi.org/10.1080/02726351.2018.1547341

    Article  Google Scholar 

  17. Sun H, Xu S, Pan X et al (2019) Investigating the jamming of particles in a three-dimensional fluid-driven flow via coupled CFD–DEM simulations. Int J Multiph Flow 114:140–153. https://doi.org/10.1016/j.ijmultiphaseflow.2019.01.017

    Article  MathSciNet  Google Scholar 

  18. Anderson TB, Jackson R (1968) Fluid mechanical description of fluidized beds. Stability of state of uniform fluidization. Ind Eng Chem Fund 7:12–21. https://doi.org/10.1021/i160025a003

    Article  Google Scholar 

  19. Tsuji Y, Kawaguchi T, Tanaka T (1993) Discrete particle simulation of two-dimensional fluidized bed. Powder Technol 77:79–87. https://doi.org/10.1016/0032-5910(93)85010-7

    Article  Google Scholar 

  20. Liu D, Bu C, Chen X (2013) Development and test of CFD–DEM model for complex geometry: a coupling algorithm for Fluent and DEM. Comput Chem Eng 58:260–268. https://doi.org/10.1016/j.compchemeng.2013.07.006

    Article  Google Scholar 

  21. Zhou ZY, Kuang SB, Chu KW, Yu AB (2010) Discrete particle simulation of particle–fluid flow: model formulations and their applicability. J Fluid Mech 661:482–510. https://doi.org/10.1017/S002211201000306X

    Article  MathSciNet  MATH  Google Scholar 

  22. Tenneti S, Subramaniam S (2014) Particle-resolved direct numerical simulation for gas-solid flow model development. Annu Rev Fluid Mech 46:199–230. https://doi.org/10.1146/annurev-fluid-010313-141344

    Article  MathSciNet  MATH  Google Scholar 

  23. Cheng K, Wang Y, Yang Q (2018) A semi-resolved CFD–DEM model for seepage-induced fine particle migration in gap-graded soils. Comput Geotech 100:30–51. https://doi.org/10.1016/j.compgeo.2018.04.004

    Article  Google Scholar 

  24. Casagrande MVS, Alves JLD, Silva CE et al (2017) A hybrid FEM-DEM approach to the simulation of fluid flow laden with many particles. Comput Part Mech 4:213–227. https://doi.org/10.1007/s40571-016-0102-y

    Article  Google Scholar 

  25. Griffith BE, Patankar NA (2020) Immersed methods for fluid–structure interaction. Annu Rev Fluid Mech 52:421–448. https://doi.org/10.1146/annurev-fluid-010719-060228

    Article  MATH  Google Scholar 

  26. Kloss C, Goniva C, Hager A et al (2012) Models, algorithms and validation for opensource DEM and CFD–DEM. Prog Comput Fluid Dyn 12:140–152. https://doi.org/10.1504/PCFD.2012.047457

    Article  MathSciNet  Google Scholar 

  27. Garg R, Tenneti S, Yusuf JM, Subramaniam S (2011) Direct numerical simulation of gas-solids flow based on the immersed boundary method. In: Pannala S, Syamlal M, O’Brien TJ (eds) Computational gas-solids flows and reacting systems: theory, methods and practice. Engineering Science Reference, New York, pp 245–276. https://doi.org/10.4018/978-1-61520-651-3.ch008

    Chapter  Google Scholar 

  28. Jabeen S, Usman K, Walayat K (2020) Numerical investigations for a chain of particles settling in a channel. Comput Part Mech 7:615–627. https://doi.org/10.1007/s40571-019-00289-2

    Article  Google Scholar 

  29. Goniva C, Kloss C, Hager A et al (2011) A multi-purpose open source CFD–DEM approach. In: 8th international conference on CFD in oil & gas, metallurgical and process industries, SINTEF/NTNU, Trondheim, Norway, pp 21–23

  30. OpenFOAM (2013) OpenFOAM user guide. https://openfoam.org/

  31. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  32. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fund 6:527–539. https://doi.org/10.1021/i160024a007

    Article  Google Scholar 

  33. Shirgaonkar AA, MacIver MA, Patankar NA (2009) A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion. J Comput Phys 228:2366–2390. https://doi.org/10.1016/j.jcp.2008.12.006

    Article  MathSciNet  MATH  Google Scholar 

  34. Hager A, Kloss C, Pirker S, Goniva C (2014) Parallel resolved open source CFD–DEM: method, validation and application. J Comput Multiph Flow 6:13–27. https://doi.org/10.1260/1757-482X.6.1.13

    Article  Google Scholar 

  35. Hager A (2014) CFD–DEM on multiple scales-an extensive investigation of particle-fluid interactions. Johannes Kepler University Linz, Linz

    Google Scholar 

  36. Brilliantov NV, Spahn F, Hertzsch J-M, Pöschel T (1996) Model for collisions in granular gases. Phys Rev E 53:5382–5392. https://doi.org/10.1103/PhysRevE.53.5382

    Article  Google Scholar 

  37. Silbert LE, Ertaş D, Grest GS et al (2001) Granular flow down an inclined plane: Bagnold scaling and rheology. Phys Rev E 64:051302. https://doi.org/10.1103/PhysRevE.64.051302

    Article  Google Scholar 

  38. Zhang HP, Makse HA (2005) Jamming transition in emulsions and granular materials. Phys Rev E 72:011301. https://doi.org/10.1103/PhysRevE.72.011301

    Article  Google Scholar 

  39. Ertaş D, Grest GS, Halsey TC et al (2001) Gravity-driven dense granular flows. EPL Europhys Lett 56:214. https://doi.org/10.1209/epl/i2001-00508-7

    Article  Google Scholar 

  40. Cheng K, Wang Y, Yang Q et al (2017) Determination of microscopic parameters of quartz sand through tri-axial test using the discrete element method. Comput Geotech 92:22–40. https://doi.org/10.1016/j.compgeo.2017.07.017

    Article  Google Scholar 

  41. Fidleris V, Whitmore RL (1961) Experimental determination of the wall effect for spheres falling axially in cylindrical vessels. Br J Appl Phys 12:490–494. https://doi.org/10.1088/0508-3443/12/9/311

    Article  Google Scholar 

  42. Apte SV, Martin M, Patankar NA (2009) A numerical method for fully resolved simulation (FRS) of rigid particle–flow interactions in complex flows. J Comput Phys 228:2712–2738. https://doi.org/10.1016/j.jcp.2008.11.034

    Article  MATH  Google Scholar 

  43. Kajishima T, Takiguchi S, Hamasaki H, Miyake Y (2001) Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding. JSME Int J B-Fluid Trans 44:526–535. https://doi.org/10.1299/jsmeb.44.526

    Article  Google Scholar 

  44. Dyke MV (1970) Extension of Goldstein’s series for the Oseen drag of a sphere. J Fluid Mech 44:365–372. https://doi.org/10.1017/S0022112070001878

    Article  MATH  Google Scholar 

  45. Turton R, Levenspiel O (1986) A short note on the drag correlation for spheres. Powder Technol 47:83–86. https://doi.org/10.1016/0032-5910(86)80012-2

    Article  Google Scholar 

  46. Brown PP, Lawler DF (2003) Sphere drag and settling velocity revisited. J Environ Eng 129:222–231. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(222)

    Article  Google Scholar 

  47. Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94

    Google Scholar 

  48. Xu C, Kang Y, Chen F, You Z (2017) Analytical model of plugging zone strength for drill-in fluid loss control and formation damage prevention in fractured tight reservoir. J Pet Sci Eng 149:686–700. https://doi.org/10.1016/j.petrol.2016.10.069

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Strategic Priority Research Program (A) of the Chinese Academy of Sciences (Grant No. XDA22040305) and Hainan Provincial Natural Science Foundation of China (Grant No. 520QN229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Monica Carvalho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ong, H., Chen, Y., Chen, M. et al. Resolved CFD–DEM simulation on hydrodynamic bridging in a bend rectangle channel. J Braz. Soc. Mech. Sci. Eng. 43, 362 (2021). https://doi.org/10.1007/s40430-021-03065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-021-03065-7

Keywords

Navigation