Log in

Synthesis and characterization of copper (Cu)/sulfur (S) co-doped anatase TiO2 via sol–gel method and photo degradation efficiency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A copper and sulfur co-doped TiO2 photocatalyst was synthesized by modified sol–gel method using titanium (IV) isopropoxide, copper sulfate (Cu2SO4·5H2O), and sodium sulfate (Na2SO4) as precursors. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM/EDS), Fourier transform infrared analysis, UV–visible analysis (UV–Vis), Photoluminescence analysis, and atomic force microscopy. The XRD results showed undoped and Cu/S-co-doped TiO2 nanoparticles only include anatase phase. The SEM analysis revealed the do** of Cu and S nano particles are highly agglomerated like cauliflower shape. The increase of copper and sulfur do** enhanced red-shift in the UV–vis absorption spectra. The photocatalytic activity of the synthesized samples was tested for degradation of Rhodamine B solutions. The results showed photocatalytic activity of the catalysts with 0.2 % Cu, 0.2 % S (1:1) on TiO2 were higher than that of other catalysts under ultraviolet irradiation. The Cu/S co-doped TiO2 catalyst has higher photocatalytic efficiency than undoped TiO2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.S. Hinczewskia, M. Hinczewskib, F.Z. Tepehana, G.G. Tepehan, Optical filters from SiO2 and TiO2 multi-layers using sol–gel spin coating method. Sol. Energy Mater. Sol. Cells 87, 181–196 (2005)

    Article  Google Scholar 

  2. G.S. Vicente, A. Morales, M.T. Gutierrez, Preparation and characterization of sol–gel TiO2 antireflective coatings for silicon. Thin Solid Films 391(1), 133–137 (2001)

    Article  Google Scholar 

  3. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sens. Actuators, B 68, 189–196 (2000)

    Article  Google Scholar 

  4. A.J. Maira, K.L. Yeung, C.Y. Lee, P.L. Yue, C.K. Chan, Size effects in gasphase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. J. Catal. 192, 185–196 (2000)

    Article  Google Scholar 

  5. K. Ikeue, H. Yamashita, M. Anpo, T. Takewaki, Photocatalytic reduction of CO2 with H2O on Ti-β zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. J. Phys. Chem. B 105, 8350–8355 (2001)

    Article  Google Scholar 

  6. X.T. Shen, L.H. Zhu, G.X. Liu, H.W. Yu, H.Q. Tang, Enhanced photocatalytic degradation and selective removal of nitrophenols by using surface molecular imprinted titania. Environ. Sci. Technol. 42, 1687–1692 (2008)

    Article  Google Scholar 

  7. H.-Y. Lin, C.-Y. Shih, Efficient one-pot microwave-assisted hydrothermal synthesis of M (M = Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting. J. Mol. Catal. A: Chem. 411, 128–137 (2016)

    Article  Google Scholar 

  8. S.M. Chang, R.A. Doong, Characterization of Zr-doped TiO2 nanocrystals by sol–gel method at high temperatures. J. Phys. Chem. B 110, 20808–20814 (2006)

    Article  Google Scholar 

  9. J.C. Yu, L.Z. Zhang, Z. Zheng, J.C. Zhao, Synthesis and characterization of phosphate mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15, 2280–2286 (2003)

    Article  Google Scholar 

  10. K. Nagaveni, M.S. Hegde, G. Madras, Structure and photocatalytic activity of Ti x M x O2±δ (M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method. J. Phys. Chem. B 108, 20204–20212 (2004)

    Article  Google Scholar 

  11. M.I. Litter, Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Appl. Catal. B Environ. 23, 89–114 (1999)

    Article  Google Scholar 

  12. J.L. Zhang, Y.M. Wu, M.Y. **ng, S.A.K. Leghari, S. Sajjad, Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 3, 715 (2010)

    Article  Google Scholar 

  13. A.T. Kuvarega, R.W.M. Krause, B.B. Mamba, Nitrogen/palladium-co doped TiO2 for efficient visible light photocatalytic dye degradation. J. Phys. Chem. C 115, 22110 (2011)

    Article  Google Scholar 

  14. Y. Cong, J. Zhang, F. Chen, M. Anpo, D. He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). J. Phys. Chem. C 111, 10618 (2007)

    Article  Google Scholar 

  15. M. **ng, J. Zhang, F. Chen, Photocatalytic performance of N-doped TiO2 adsorbed with Fe3+ ions under visible light by a redox treatment. J. Phys. Chem. C 113, 12848 (2009)

    Article  Google Scholar 

  16. Y. Shen, T. **ong, T. Li, K. Yang, Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response. Appl. Catal. B 83, 177 (2008)

    Article  Google Scholar 

  17. K.Q. Tan, H.R. Zhang, C.F. **e, H.W. Zheng, Y.Z. Gu, W.F. Zhang, Mo, N-codoped anatase nanocrystalline TiO2 by a sol-gel method. Catal. Commun. 11, 331 (2010)

    Article  Google Scholar 

  18. U.G. Akpan, B.H. Hameed, The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl. Catal. A 375, 1–11 (2010)

    Article  Google Scholar 

  19. D.H. Kim, S.I. Woo, S.H. Moon, H.D. Kim, B.Y. Kim, J.H. Cho, Y.G. Joh, E.C. Kim, Effect of Co/Fe co-do** in TiO2 rutile prepared by solid state reaction. Solid State Commun. 136, 554–558 (2005)

    Article  Google Scholar 

  20. N. Venkatachalam, M. Palanichamy, V. Murugesan, Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: efficient photocatalytic degradation of 4-chlorophenol. J. Mol. Catal. A: Chem. 273, 177–185 (2007)

    Article  Google Scholar 

  21. K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, Visible light-driven photocatalytic degradation of rhodamine B over NaBiO3: pathways and mechanism. J. Phys. Chem. A 113, 10024–10032 (2009)

    Article  Google Scholar 

  22. F. Chen, J. Zhao, H. Hidaka, Highly selective deethylation of rhodamine B: adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int. J. Photoenergy 5, 209–217 (2003)

    Article  Google Scholar 

  23. Y.A.N.G. **-jia, W.A.N.G. Shu, S.U.N. Hai-ming, W.A.N.G. **ao-bing, L.I.A.N. Jian-she, Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles. Trans. Nonferrous Met. Soc. China 25, 504–509 (2015)

    Article  Google Scholar 

  24. K.V. Baiju, P. Shajesh, W. Wunderlich, P. Mukundan, S.R. Kumar, K.G.K. Warrier, Effect of tantalum addition on anatase phase stability and photoactivity of aqueous sol–gel derived mesoporous titania. J. Mol. Catal. A: Chem. 276, 41–46 (2007)

    Article  Google Scholar 

  25. J. Nair, P. Nair, F. Mizukami, Y. Oosawa, T. Okubo, Microstructure and phase transformation behavior of doped nanostructured titania. Mater. Res. Bull. 34, 1275–1290 (1999)

    Article  Google Scholar 

  26. G.Q. Xu, Z.X. Zheng, Y.C. Wu, N. Feng, Effect of silica on the micro-structure and photocatalytic properties of titania. Ceram. Int. 35, 1–5 (2009)

    Article  Google Scholar 

  27. G. Devanand Venkatasubbu, S. Ramasamya, V. Ramakrishnan, J. Kumar, Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Adv. Powder Technol. 24, 947–954 (2013)

    Article  Google Scholar 

  28. J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 114, 13118–13125 (2010)

    Article  Google Scholar 

  29. X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, Photocatalytic activity of WO x-TiO2 under visible light irradiation. J. Photochem. Photobiol. A 141, 209–217 (2001)

    Article  Google Scholar 

  30. X. Shen, B. Tian, J. Zhang, Preparation of titania with controllable phases of anatase and brookite by an alkalescent hydrothermal route. Catal. Today 201, 151–158 (2013)

    Article  Google Scholar 

  31. Qi **ao, Zhichun Si, Yu. Zhiming, Guanzhou Qiu, Sol-gel auto-combustion synthesis of samarium-doped TiO2 nanoparticles and their photocatalytic activity under visible light irradiation. Mater. Sci. Eng. B 137, 189–194 (2007)

    Article  Google Scholar 

  32. N. Ghows, M.H. Entezari, Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcinations. Ultrasonics Sonochem. 17, 878–883 (2010)

    Article  Google Scholar 

  33. N.J. Serpone, Is the band gap of pristine TiO2 narrowed by anion-and cation-do** of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287 (2006)

    Article  Google Scholar 

  34. L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, Size dependent fluorescence spectroscopy of nano colloids of ZnO. J. Appl. Phys. 102, 063524 (2007)

    Article  Google Scholar 

  35. L. Haibin, D. Xuechen, L. Guocong, L. Lili, Mater. Res. Bull. 43, 1971–1981 (2008)

    Article  Google Scholar 

  36. H.M. Liu, W.S. Yang, Y. Ma, Y.A. Cao, J.N. Yao, J. Zhang, T.D. Hu, Synthesis and Characterization of titania prepared by using a photoassisted sol–gel method. Langmuir 19, 3001–3005 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, V., Ramesh, P.S. & Geetha, D. Synthesis and characterization of copper (Cu)/sulfur (S) co-doped anatase TiO2 via sol–gel method and photo degradation efficiency. J Mater Sci: Mater Electron 27, 8118–8125 (2016). https://doi.org/10.1007/s10854-016-4813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4813-x

Keywords

Navigation