Log in

Preparing an adsorbent from the unused solid waste of Rosewater extraction for high efficient removal of Crystal Violet

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The unused waste of Rosewater extraction has been used in this study for the synthesis of an adsorbent. The activation of the unused waste of Rosewater extraction was performed by ZnCl2 and the electric furnace. The effects of temperature and the amount of ZnCl2 on Crystal Violet (CV) removal were studied. The highest dye removal was obtained by 30 wt% ZnCl2 for one hour and heating at 600 °C. The synthesized adsorbent was characterized by scanning electron microscopy, X-ray diffraction technique, X-ray fluorescence spectrometer, and Fourier transform infrared spectroscopy and N2 adsorption/desorption isotherm. The studies showed the percentage of ZnO is high in the prepared adsorbent. The analyses showed the adsorbent has a higher volume of wide micropores and a small volume of mesopores with BET surface area 432.51 m2 g−1. The effects of temperature (25–40 °C), adsorbent dosage (0.5–2 g L−1), pH (2–11), time (0–320 min), and dye concentration (3–10 mg L−1) on adsorbent's ability for dye adsorption were studied. The fractal-like integrated kinetic model and Freundlich isotherm were the best kinetic and isotherm equations for CV adsorption on the synthesized adsorbent. These results show that the surface of the adsorbent is heterogeneous. The thermodynamic study showed that adsorption is spontaneous, and it is chemisorption. The adsorption performance of CV on the prepared adsorbent was compared with the commercial activated carbon. Comparing the adsorption capacities of the synthesized adsorbent (168.8 mg g−1), commercial activated carbon (108.22 mg g−1), and some other adsorbents for CV removal proved, it is a high efficient adsorbent. The importance of this study is providing a condition for the preparation of a low-cost and high efficient adsorbent from the unused waste of Rosewater extraction for water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Pereira, M. Alves, Dyes—Environmental Impact and Remediation, Environmental Protection Strategies for Sustainable Development (Springer, Dordrecht, 2012), pp. 111–162

    Book  Google Scholar 

  2. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. M. Abbasi, N. RazzaghiAsl, Sonochemical degradation of basic blue 41 dye assisted by nanoTiO2 and H2O2. J. Hazard. Mater. 153, 942–947 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. N. Zaghbani, A. Hafiane, M. Dhahbi, Removal of Safranin T from wastewater using micellar enhanced ultrafiltration. Desalination 222, 348–356 (2008)

    Article  CAS  Google Scholar 

  5. M.-X. Zhu, L. Lee, H.-H. Wang, Z. Wang, Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J. Hazard. Mater. 149, 735–741 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. U. Kamran, H.N. Bhatti, M. Iqbal, S. Jamil, M. Zahid, Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. J. Mol. Struct. 1179, 532–539 (2019)

    Article  CAS  Google Scholar 

  7. S. Eris, H. Bashiri, Kinetic study of the adsorption of dyes onto activated carbon. Prog. React. Kinet. Mech. 41, 109–119 (2016)

    Article  CAS  Google Scholar 

  8. M. Sarabadan, H. Bashiri, S.M. Mousavi, Adsorption of crystal violet dye by zeolite-montmorillonite: modeling, kinetic and equilibrium studies. Clay Miner. 54, 357–368 (2019)

    Article  CAS  Google Scholar 

  9. H. Bashiri, M. Rafiee, Kinetic Monte Carlo simulation of 2,4,6-thrichloro phenol ozonation in the presence of ZnO nanocatalyst. J. Saudi Chem. Soc. 20, 474–479 (2016)

    Article  CAS  Google Scholar 

  10. J.-S. Wu, C.-H. Liu, K.H. Chu, S.-Y. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J. Membr. Sci. 309, 239–245 (2008)

    Article  CAS  Google Scholar 

  11. J. García-Montaño, L. Pérez-Estrada, I. Oller, M.I. Maldonado, F. Torrades, J. Peral, Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. J. Photochem. Photobiol. A 195, 205–214 (2008)

    Article  CAS  Google Scholar 

  12. L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model. Dyes Pigm. 76, 440–446 (2008)

    Article  CAS  Google Scholar 

  13. S. Li, Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly(acrylic acid-acrylamide-methacrylate) and amylose. Bioresour. Technol. 101, 2197–2202 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. X.S. Wang, W. Zhang, Removal of basic dye crystal violet from aqueous solution by Cu(II)-Loaded Montmorillonite. Sep. Sci. Technol. 46, 656–663 (2011)

    Article  CAS  Google Scholar 

  15. P. Monash, G. Pugazhenthi, Removal of crystal violet dye from aqueous solution using Calcined and Uncalcined Mixed Clay Adsorbents. Sep. Sci. Technol. 45, 94–104 (2009)

    Article  CAS  Google Scholar 

  16. M. Sarabadan, H. Bashiri, S.M. Mousavi, Removal of crystal violet dye by an efficient and low cost adsorbent: modeling, kinetic, equilibrium and thermodynamic studies. Korean J. Chem. Eng. 36, 1575–1586 (2019)

    Article  CAS  Google Scholar 

  17. J. Mo, Q. Yang, N. Zhang, W. Zhang, Y. Zheng, Z. Zhang, A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J. Environ. Manage 227, 395–405 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. M.A. Tahir, H.N. Bhatti, I. Hussain, I.A. Bhatti, M. Asghar, Sol–Gel synthesis of mesoporous silica-iron composite: kinetics, equilibrium and thermodynamics studies for the adsorption of Turquoise-Blue X-GB Dye. Z. Phys. Chem. 234, 233–253 (2020)

    Article  CAS  Google Scholar 

  19. S. Noreen, H.N. Bhatti, M. Iqbal, F. Hussain, F.M. Sarim, Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. Int. J. Biol. Macromol. 147, 439–452 (2020)

    Article  CAS  PubMed  Google Scholar 

  20. K.M.S. Khalil, O.A.S. Allam, M. Khairy, K.M.H. Mohammed, R.M. Elkhatib, M.A. Hamed, High surface area nanostructured activated carbons derived from sustainable sorghum stalk. J. Mol. Liq. 247, 386–396 (2017)

    Article  CAS  Google Scholar 

  21. B. Heibati, S. Rodriguez-Couto, M.A. Al-Ghouti, M. Asif, I. Tyagi, S. Agarwal, V.K. Gupta, Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. J. Mol. Liq. 208, 99–105 (2015)

    Article  CAS  Google Scholar 

  22. S. Somasundaram, K. Sekar, V.K. Gupta, S. Ganesan, Synthesis and characterization of mesoporous activated carbon from rice husk for adsorption of glycine from alcohol-aqueous mixture. J. Mol. Liq. 177, 416–425 (2013)

    Article  CAS  Google Scholar 

  23. L. Muniandy, F. Adam, A.R. Mohamed, E.-P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater. 197, 316–323 (2014)

    Article  CAS  Google Scholar 

  24. E. Menya, P.W. Olupot, H. Storz, M. Lubwama, Y. Kiros, Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem. Eng. Res. Des. 129, 271–296 (2018)

    Article  CAS  Google Scholar 

  25. H.N. Bhatti, Y. Safa, S.M. Yakout, O.H. Shair, M. Iqbal, A. Nazir, Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. Int. J. Biol. Macromol. 150, 861–870 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. H. Bashiri, S. Nesari, Removal of Alizarin yellow from water by activated carbon prepared from microwave radiation of rice husk: thermodynamic, equilibrium and kinetic study. J. Appl. Chem. 14, 335–352 (2019)

    Google Scholar 

  27. T. Yang, A.C. Lua, Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells. Mater. Chem. Phys. 100, 438–444 (2006)

    Article  CAS  Google Scholar 

  28. A.M.K.P. Singh, S. Sinha, P. Ojha, Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. J. Hazard. Mater. 150, 626–641 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. A.-A. Peláez-Cid, A.-M. Herrera-González, M. Salazar-Villanueva, A. Bautista-Hernández, Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization. J. Environ. Manage 181, 269–278 (2016)

    Article  PubMed  CAS  Google Scholar 

  30. H. Ali, S. Muhammad, Biosorption of crystal violet from water on leaf biomass of Calotropis procera. J. Environ. Sci. Technol. 1, 143–150 (2008)

    Article  CAS  Google Scholar 

  31. P. Grassi, C. Reis, F.C. Drumm, J. Georgin, D. Tonato, L.B. Escudero, R. Kuhn, S.L. Jahn, G.L. Dotto, Biosorption of crystal violet dye using inactive biomass of the fungus Diaporthe schini. Water Sci. Technol. 79, 709–717 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. P. Kyi, J. Quansah, C.-G. Lee, J.K. Moon, S.-J. Park, The removal of crystal violet from textile wastewater using Palm Kernel Shell-Derived Biochar. Appl. Sci. 10, 2251 (2020)

    Article  CAS  Google Scholar 

  33. N. Laskar, U. Kumar, Adsorption of crystal violet from wastewater by Modified Bambusa Tulda. KSCE J. Civ. Eng. 22, 2755–2763 (2018)

    Article  Google Scholar 

  34. M. Alshabanat, G. Alsenani, R. Almufarij, Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique. J. Chem. 2013, 210239 (2013)

    Article  CAS  Google Scholar 

  35. V. Gomez-Serrano, J. Pastor-Villegas, A. Perez-Florindo, C. Duran-Valle, C. Valenzuela-Calahorro, FT-IR study of rockrose and of char and activated carbon. J. Anal. Appl. Pyrolysis 36, 71–80 (1996)

    Article  CAS  Google Scholar 

  36. C. Saka, BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. J. Anal. Appl. Pyrolysis 95, 21–24 (2012)

    Article  CAS  Google Scholar 

  37. R. Wahab, S.G. Ansari, Y.S. Kim, H.K. Seo, G.S. Kim, G. Khang, H.-S. Shin, Low temperature solution synthesis and characterization of ZnO nano-flowers. Mater. Res. Bull. 42, 1640–1648 (2007)

    Article  CAS  Google Scholar 

  38. A.R. Hidayu, N.F. Mohamad, S. Matali, A.S.A.K. Sharifah, Characterization of activated carbon prepared from oil palm empty fruit bunch using BET and FT-IR techniques. Procedia Eng. 68, 379–384 (2013)

    Article  CAS  Google Scholar 

  39. K.S.K. Reddy, A. Al Shoaibi, C. Srinivasakannan, Activated carbon from date palm seed: process optimization using response surface methodology. Waste Biomass Valoriz. 3, 149–156 (2012)

    Article  CAS  Google Scholar 

  40. I. Langmuir, The constitution and fundamental properties of solids and liquids. PART I. Solids. J. Am. Chem. Soc. 38, 2221–2295 (1916)

    Article  CAS  Google Scholar 

  41. H. Freundlich, Über die Adsorption in Lösungen. Z. Phys. Chem. 57U, 385 (1907)

    Article  Google Scholar 

  42. M.J. Temkin, V. Pyzhev, Recent modification to Langmiur isotherms. Acta Physicochimica U.R.S.S. 12, 327–356 (1940)

    CAS  Google Scholar 

  43. R. Sips, On the structure of a catalyst surface. J. Chem. Phys. 16, 490–495 (1948)

    Article  CAS  Google Scholar 

  44. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1–39 (1898)

    Google Scholar 

  45. Y.S. Ho, G. Mckay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 76, 822–827 (1998)

    Article  CAS  Google Scholar 

  46. J. Zeldowitsch, Über den mechanismus der katalytischen oxydation von CO an MnO2. Acta Physicochimica URSS 1, 449–464 (1934)

    Google Scholar 

  47. S.S.C. Aharoni, E. Hoffer, Adsorption of phosphate ions by collodion-coated alumina. J. Chem. Technol. Biotechnol. 29, 404–412 (1979)

    Article  CAS  Google Scholar 

  48. S. Azizian, H. Bashiri, Adsorption kinetics at the solid/solution interface: statistical rate theory at initial times of adsorption and close to equilibrium. Langmuir 24, 11669–11676 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. X. Yang, B. Al-Duri, Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J. Colloid Interface Sci. 287, 25–34 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. A.W. Marczewski, Analysis of kinetic Langmuir model. part I: integrated kinetic Langmuir equation (IKL) a new complete analytical solution of the Langmuir rate equation. Langmuir 26, 15229–15238 (2010)

    Article  CAS  PubMed  Google Scholar 

  51. M. Haerifar, S. Azizian, Fractal-like adsorption kinetics at the solid/solution interface. J. Phys. Chem. C 116, 13111–13119 (2012)

    Article  CAS  Google Scholar 

  52. H.N. Tran, S.-J. You, H.-P. Chao, Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study. J. Environ. Chem. Eng. 4, 2671–2682 (2016)

    Article  CAS  Google Scholar 

  53. O.S. Amodu, T.V. Ojumu, S.K. Ntwampe, O.S. Ayanda, Rapid adsorption of crystal violet onto magnetic zeolite synthesized from fly ash and magnetite nanoparticles. J. Encapsul. Adsorpt. Sci. 5, 191–203 (2015)

    CAS  Google Scholar 

  54. T.C.R. Bertolini, J.C. Izidoro, C.P. Magdalena, D.A. Fungaro, Adsorption of crystal violet dye from aqueous solution onto zeolites from coal fly and bottom ashes. Orbital Electron. J. Chem. 5, 179–191 (2013)

    Google Scholar 

  55. M.K. Satapathy, P. Das, Optimization of crystal violet dye removal using novel soil-silver nanocomposite as nanoadsorbent using response surface methodology. J. Environ. Chem. Eng. 2, 708–714 (2014)

    Article  CAS  Google Scholar 

  56. S. Senthilkumaar, P. Kalaamani, C.V. Subburaam, Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. J. Hazard. Mater. 136, 800–808 (2006)

    Article  CAS  PubMed  Google Scholar 

  57. M. Ishaq, F. Javed, I. Amad, H. Ullah, F. Hadi, S. Sultan, Adsorption of crystal violet dye from aqueous solutions onto low-cost untreated and NaOH treated almond shell. Iran. J. Chem. Chem. Eng. (IJCCE) 35, 97–106 (2016)

    CAS  Google Scholar 

  58. E. Alipanahpour Dila, M. Ghaedi, A. Ghaedi, A. Asfaram, M. Jamshidi, M.K. Purkait, Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study. J. Taiwan Inst. Chem. Eng. 59, 210–220 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University of Kashan for supporting this work by Grant No. (785108/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadis Bashiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falaki, Z., Bashiri, H. Preparing an adsorbent from the unused solid waste of Rosewater extraction for high efficient removal of Crystal Violet. J IRAN CHEM SOC 18, 2689–2702 (2021). https://doi.org/10.1007/s13738-021-02222-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02222-y

Keywords

Navigation