Log in

Gauge fixing and constrained dynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We review the Dirac formalism for dealing with constraints in a canonical Hamiltonian formulation, discuss gauge freedom, and display constraints for gauge theories in a general context. We introduce the Dirac bracket and show that it provides a consistent method to remove any gauge freedom present. We discuss stability in evolution of gauge theories and show that fixing all gauge freedom is sufficient to ensure well-posedness for a large class of gauge theories. Electrodynamics provides examples of the methods outlined for general gauge theories. Future work will apply the formalism, and results derived here, to General Relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A.M. Dirac, The theory of gravitation in Hamiltonian form. R. Soc. Lond. Proc. Ser. A 246, 333–343 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Arnowitt, S. Deser, C.W. Misner, The dynamics of general relativity, in Gravitation: An Introduction to Current Research. ed. by L. Witten (Wiley, New York; London, 1962), pp. 227–265

    Google Scholar 

  3. S.G. Hahn, R.W. Lindquist, The two-body problem in geometrodynamics. Ann. Phys. 29(2), 304–331 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  4. B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  5. T.W. Baumgarte, S.L. Shapiro, Numerical integration of Einstein’s field equations. Phys. Rev. D. 59(2), 024007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Nagy, O.E. Ortiz, O.A. Reula, Strongly hyperbolic second order Einstein’s evolution equations. Phys. Rev. D. 70(4), 044012 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Frankel, The Geometry of Physics. The Geometry of Physics, by Theodore Frankel, pp. 720. ISBN 0521833302. Cambridge, UK: Cambridge University Press, November (2003)

  8. H. Goldstein, Classical Mechanics (Addison Wesley, Harlow, 2002)

    MATH  Google Scholar 

  9. J. Jorge, E. Saletan, Classical Dynamics (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  10. P.J. Morrison, Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467–521 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Nakahara, Geometry, Topology, and Physics (Institute of Physics Publishing, Bristol, 2003)

    MATH  Google Scholar 

  12. C. Rovelli, Quantum Gravity. Quantum Gravity, by Carlo Rovelli, pp. 480. ISBN 0521837332. Cambridge, UK: Cambridge University Press (2004)

  13. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems. Princeton, USA: University Press (1992)

  14. P.A.M. Dirac, Generalized Hamiltonian dynamics. R. Soc. Lond. Proc. Ser. A 246, 326–332 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  15. J.L. Anderson, P.G. Bergmann, Constraints in covariant field theories. Phys. Rev. 83, 1018–1025 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  16. P.G. Bergmann, I. Goldberg, Dirac bracket transformations in phase space. Phys. Rev. 98, 531–538 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  17. B.S. Dewitt, C.M. Dewitt, The quantum theory of interacting gravitational and spinor fields. Phys. Rev. 87, 116–122 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  18. D. C. Salisbury, Rosenfeld, Bergmann, Dirac and the Invention of Constrained Hamiltonian Dynamics. In H. Kleinert, R. T. Jantzen, & R. Ruffini, editor, The Eleventh Marcel Grossmann Meeting On Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, pp. 2467–2469 (September 2008)

  19. S.L. Lyakhovich, A.A. Sharapov, Normal forms and gauge symmetry of local dynamics. J. Math. Phys. 50(8), 083510 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Göckeler, T. Schücker, Differential Geometry, Gauge Theories, and Gravity. Differential Geometry, Gauge Theories, and Gravity, by M. Göckeler and T. Schücker, pp. 248. ISBN 0521378214. Cambridge, UK: Cambridge University Press (July 1989)

  21. T. Ivey, J.M. Landsberg, Cartan for Beginners (American Mathematical Society, Providence, 2003)

    MATH  Google Scholar 

  22. H.O. Gustafsson, B. Kreiss, J. Oliger, Time Dependent Problems and Difference Methods (Wiley, New York, 1995)

    MATH  Google Scholar 

  23. J. David Brown, Strongly Hyperbolic Extensions of the ADM Hamiltonian. (2008)

  24. J.D. Brown, L.L. Lowe, Modifying the Einstein equations off the constraint hypersurface. Phys. Rev. D. 74(10), 104023 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Weinberg, The quantum theory of fields. Vol.1: Foundations. Cambridge, New York: Cambridge University Press (1995)

  26. O.A. Reula, Strongly hyperbolic systems in General Relativity (2004)

Download references

Acknowledgements

We thank Claudio Bunster, Mark Henneaux, David Brown, and Phil Morrison for their interesting early discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Matzner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, J., Matzner, R.A. Gauge fixing and constrained dynamics. Eur. Phys. J. Plus 137, 41 (2022). https://doi.org/10.1140/epjp/s13360-021-02258-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02258-2

Navigation