Log in

Utilization of tea wastes for the removal of toxic dyes from polluted water—a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The presence of dyes in the aqueous system is a worldwide concern. Among the different available water treatment methods, adsorption one has attracted substantial consideration due to its unmatched advantages like selectivity, low cost, applicability verities of contaminants, high efficiency, ease and simplicity of operation, reusability of the adsorbents, etc. The utilization of these advantages depends on the appropriate choice of the adsorbent. The surplus availability and simple preparation might be the primary requirements of a promising adsorbent. In this context, tea waste materials pose themselves as potential candidates for their employment as adsorbents. In this review article, the use of unmodified raw tea waste materials as adsorbents for the remediation of water and wastewater containing dyes as pollutants has been thoroughly discussed. The review includes the characterization of tea waste-based adsorbents and their utilization for dye removal. The isotherm, kinetics, and thermodynamics accompanying the process of dye removal have also been discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365. https://doi.org/10.1016/j.envpol.2019.05.072

    Article  Google Scholar 

  2. Shakoor S, Nasar A (2016) Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. J Taiwan Inst Chem Eng 66:154–163. https://doi.org/10.1016/j.jtice.2016.06.009

    Article  Google Scholar 

  3. Nasar A, Shakoor S (2017) Remediation of dyes from industrial wastewater using low-cost adsorbents. In: Inamuddin, Al-Ahmed A (eds) Applications of Adsorption and Ion Exchange Chromatography in Waste Water Treatment. Materials Research Forum LLC, pp 1–33. https://doi.org/10.21741/9781945291333-1

  4. Sivagami K, Sakthivel KP, Nambi IM (2018) Advanced oxidation processes for the treatment of tannery wastewater. J Environ Chem Eng 6:3656–3663. https://doi.org/10.1016/j.jece.2017.06.004

    Article  Google Scholar 

  5. Andreozzi R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59. https://doi.org/10.1016/S0920-5861(99)00102-9

    Article  Google Scholar 

  6. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59. https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  7. Verma P, Samanta SK (2018) Microwave-enhanced advanced oxidation processes for the degradation of dyes in water. Environ Chem Lett 16:969–1007. https://doi.org/10.1007/s10311-018-0739-2

    Article  Google Scholar 

  8. Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227. https://doi.org/10.1016/j.chemosphere.2017.12.195

    Article  Google Scholar 

  9. Hassan MM, Carr CM (2018) A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 209:201–219. https://doi.org/10.1016/j.chemosphere.2018.06.043

    Article  Google Scholar 

  10. Joseph J, Radhakrishnan RC, Johnson JK, Joy SP, Thomas J (2020) Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater Chem Phys 242:122488. https://doi.org/10.1016/j.matchemphys.2019.122488

    Article  Google Scholar 

  11. Levchuk I, Rueda Márquez JJ, Sillanpää M (2018) Removal of natural organic matter (NOM) from water by ion exchange – a review. Chemosphere 192:90–104. https://doi.org/10.1016/j.chemosphere.2017.10.101

    Article  Google Scholar 

  12. Khandegar V, Saroha AK (2013) Electrocoagulation for the treatment of textile industry effluent – a review. J Environ Manag 128:949–963. https://doi.org/10.1016/j.jenvman.2013.06.043

    Article  Google Scholar 

  13. Emamjomeh MM, Sivakumar M (2009) Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J Environ Manag 90:1663–1679. https://doi.org/10.1016/j.jenvman.2008.12.011

    Article  Google Scholar 

  14. Ölmez T (2009) The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. J Hazard Mater 162:1371–1378. https://doi.org/10.1016/j.jhazmat.2008.06.017

    Article  Google Scholar 

  15. Korngold E, Kock K, Strathmann H (1977) Electrodialysis in advanced waste water treatment. Desalination 24:129–139. https://doi.org/10.1016/S0011-9164(00)88079-0

    Article  Google Scholar 

  16. Al-Amshawee S, Yunus MYBM, Azoddein AAM et al (2020) Electrodialysis desalination for water and wastewater: a review. Chem Eng J 380:122231. https://doi.org/10.1016/j.cej.2019.122231

    Article  Google Scholar 

  17. Vineyard D, Hicks A, Karthikeyan KG, Barak P (2020) Economic analysis of electrodialysis, denitrification, and anammox for nitrogen removal in municipal wastewater treatment. J Clean Prod 262:121145. https://doi.org/10.1016/j.jclepro.2020.121145

    Article  Google Scholar 

  18. Kolesnikov VA, Il’in VI, Kolesnikov AV (2019) Electroflotation in wastewater treatment from oil products, dyes, surfactants, ligands, and biological pollutants: a review. Theor Found Chem Eng 53:251–273. https://doi.org/10.1134/S0040579519010093

    Article  Google Scholar 

  19. Khelifa A, Moulay S, Naceur AW (2005) Treatment of metal finishing effluents by the electroflotation technique. Desalination 181:27–33. https://doi.org/10.1016/j.desal.2005.01.011

    Article  Google Scholar 

  20. de Oliveira da Mota I, de Castro JA, de Góes CR, de Oliveira Junior AG (2015) Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals. J Mater Res Technol 4:109–113. https://doi.org/10.1016/j.jmrt.2014.11.004

    Article  Google Scholar 

  21. Khamparia S, Jaspal DK (2017) Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Front Environ Sci Eng 11:8. https://doi.org/10.1007/s11783-017-0899-5

    Article  Google Scholar 

  22. de Souza SM d AGU, Bonilla KAS, de Souza AAU (2010) Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment. J Hazard Mater 179:35–42. https://doi.org/10.1016/j.jhazmat.2010.02.053

    Article  Google Scholar 

  23. Wang J, Chen H (2020) Catalytic ozonation for water and wastewater treatment: recent advances and perspective. Sci Total Environ 704:135249. https://doi.org/10.1016/j.scitotenv.2019.135249

    Article  Google Scholar 

  24. Malik SN, Ghosh PC, Vaidya AN, Mudliar SN (2020) Hybrid ozonation process for industrial wastewater treatment: Principles and applications: a review. J Water Process Eng 35:101193. https://doi.org/10.1016/j.jwpe.2020.101193

    Article  Google Scholar 

  25. Yang Y, Wyatt DT, Bahorsky M (1998) Decolorization of dyes using UV/H2O2 photochemical oxidation. Text Chem Color 30:27–35

    Google Scholar 

  26. Dil EA, Ghaedi M, Asfaram A, Mehrabi F, Bazrafshan AA, Ghaedi AM (2016) Trace determination of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: artificial neural network-genetic algorithm and response surface methodology. Ultrason Sonochem 33:129–140. https://doi.org/10.1016/j.ultsonch.2016.04.031

    Article  Google Scholar 

  27. Butani SA, Mane SJ (2017) Coagulation/flocculation process for cationic, anionic dye removal using water treatment residuals–a review. Int J Sci Technol Manag 6:1–5

    Google Scholar 

  28. Rezakazemi M, Khajeh A, Mesbah M (2018) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 16:367–388. https://doi.org/10.1007/s10311-017-0693-4

    Article  Google Scholar 

  29. Zahrim AY, Hilal N (2013) Treatment of highly concentrated dye solution by coagulation/flocculation-sand filtration and nanofiltration. Water Resour Ind 3:23–34. https://doi.org/10.1016/j.wri.2013.06.001

    Article  Google Scholar 

  30. Chakraborty S, Purkait MK, DasGupta S, de S, Basu JK (2003) Nanofiltration of textile plant effluent for color removal and reduction in COD. Sep Purif Technol 31:141–151. https://doi.org/10.1016/S1383-5866(02)00177-6

    Article  Google Scholar 

  31. Peydayesh M, Mohammadi T, Bakhtiari O (2018) Effective treatment of dye wastewater via positively charged TETA-MWCNT/PES hybrid nanofiltration membranes. Sep Purif Technol 194:488–502. https://doi.org/10.1016/j.seppur.2017.11.070

    Article  Google Scholar 

  32. Karate VD, Marathe KV (2008) Simultaneous removal of nickel and cobalt from aqueous stream by cross flow micellar enhanced ultrafiltration. J Hazard Mater 157:464–471

    Article  Google Scholar 

  33. Xu K, Zeng G, Huang J, Wu JY, Fang YY, Huang G, Li J, ** B, Liu H (2007) Removal of Cd2+ from synthetic wastewater using micellar-enhanced ultrafiltration with hollow fiber membrane. Colloids Surf A Physicochem Eng Asp 294:140–146

    Article  Google Scholar 

  34. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43:2317–2348. https://doi.org/10.1016/j.watres.2009.03.010

    Article  Google Scholar 

  35. Al-Bastaki N (2004) Removal of methyl orange dye and Na2so4 salt from synthetic waste water using reverse osmosis. Chem Eng Process Process Intensif 43:1561–1567. https://doi.org/10.1016/j.cep.2004.03.001

    Article  Google Scholar 

  36. Qasim M, Badrelzaman M, Darwish NN, Darwish NA, Hilal N (2019) Reverse osmosis desalination: a state-of-the-art review. Desalination 459:59–104. https://doi.org/10.1016/j.desal.2019.02.008

    Article  Google Scholar 

  37. Missimer TM, Maliva RG (2018) Environmental issues in seawater reverse osmosis desalination: intakes and outfalls. Desalination 434:198–215. https://doi.org/10.1016/j.desal.2017.07.012

    Article  Google Scholar 

  38. Qamruzzaman, Nasar A (2019) Degradative treatment of bispyribac sodium herbicide from synthetically contaminated water by colloidal MnO2 dioxide in the absence and presence of surfactants. Environ Technol 40:451–457. https://doi.org/10.1080/09593330.2017.1396500

    Article  Google Scholar 

  39. Qamruzzaman, Nasar A (2015) Degradation of acephate by colloidal manganese dioxide in the absence and presence of surfactants. Desalin Water Treat 55:2155–2164. https://doi.org/10.1080/19443994.2014.937752

    Article  Google Scholar 

  40. Qamruzzaman, Nasar A (2014) Treatment of acetamiprid insecticide from artificially contaminated water by colloidal manganese dioxide in the absence and presence of surfactants. RSC Adv 4:62844–62850. https://doi.org/10.1039/c4ra09685a

    Article  Google Scholar 

  41. Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10. https://doi.org/10.4067/S0718-95162010000100004

  42. Chan YJ, Chong MF, Law CL, Hassell DG (2009) A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem Eng J 155:1–18. https://doi.org/10.1016/j.cej.2009.06.041

    Article  Google Scholar 

  43. Shoukat R, Khan SJ, Jamal Y (2019) Hybrid anaerobic-aerobic biological treatment for real textile wastewater. J Water Process Eng 29:100804. https://doi.org/10.1016/j.jwpe.2019.100804

    Article  Google Scholar 

  44. Özverdi A, Erdem M (2006) Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J Hazard Mater 137:626–632. https://doi.org/10.1016/j.jhazmat.2006.02.051

    Article  Google Scholar 

  45. Reyes-Serrano A, López-Alejo JE, Hernández-Cortázar MA, Elizalde I (2020) Removing contaminants from tannery wastewater by chemical precipitation using CaO and Ca(OH)2. Chin J Chem Eng 28:1107–1111. https://doi.org/10.1016/j.cjche.2019.12.023

    Article  Google Scholar 

  46. Izadi A, Mohebbi A, Amiri M, Izadi N (2017) Removal of iron ions from industrial copper raffinate and electrowinning electrolyte solutions by chemical precipitation and ion exchange. Miner Eng 113:23–35. https://doi.org/10.1016/j.mineng.2017.07.018

    Article  Google Scholar 

  47. Rusten B, Kolkinn O, Ødegaard H (1997) Moving bed biofilm reactors and chemical precipitation for high efficiency treatment of wastewater from small communities. Water Sci Technol 35. https://doi.org/10.1016/S0273-1223(97)00097-8

  48. Mashkoor F, Nasar A (2020) Magsorbents: potential candidates in wastewater treatment technology – a review on the removal of methylene blue dye. J Magn Magn Mater 500:166408. https://doi.org/10.1016/j.jmmm.2020.166408

    Article  Google Scholar 

  49. Nasar A, Mashkoor F (2019) Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review. Environ Sci Pollut Res 26:5333–5356. https://doi.org/10.1007/s11356-018-3990-y

    Article  Google Scholar 

  50. Mashkoor F, Nasar A, Inamuddin (2020) Carbon nanotube-based adsorbents for the removal of dyes from waters: a review. Environ Chem Lett 18:605–629. https://doi.org/10.1007/s10311-020-00970-6

    Article  Google Scholar 

  51. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

    Article  Google Scholar 

  52. Bhatnagar A, Sillanpää M, Witek-Krowiak A (2015) Agricultural waste peels as versatile biomass for water purification – a review. Chem Eng J 270:244–271. https://doi.org/10.1016/j.cej.2015.01.135

    Article  Google Scholar 

  53. Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157:277–296. https://doi.org/10.1016/j.cej.2010.01.007

    Article  Google Scholar 

  54. Ben Arfi R, Karoui S, Mougin K, Ghorbal A (2017) Adsorptive removal of cationic and anionic dyes from aqueous solution by utilizing almond shell as bioadsorbent. EuroMediterr J Environ Integr 2:20. https://doi.org/10.1007/s41207-017-0032-y

    Article  Google Scholar 

  55. Goksu A, Tanaydin MK (2017) Adsorption of hazardous crystal violet dye by almond shells and determination of optimum process conditions by Taguchi method. Desalin Water Treat 88:189–199. https://doi.org/10.5004/dwt.2017.21364

    Article  Google Scholar 

  56. Doulati Ardejani F, Badii K, Limaee NY, Shafaei SZ, Mirhabibi AR (2008) Adsorption of direct red 80 dye from aqueous solution onto almond shells: effect of pH, initial concentration and shell type. J Hazard Mater 151:730–737. https://doi.org/10.1016/j.jhazmat.2007.06.048

    Article  Google Scholar 

  57. Motejadded Emrooz HB, Maleki M, Rashidi A, Shokouhimehr M (2020) Adsorption mechanism of a cationic dye on a biomass-derived micro- and mesoporous carbon: structural, kinetic, and equilibrium insight. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00584-1

  58. Munagapati VS, Yarramuthi V, Kim Y, Lee KM, Kim DS (2018) Removal of anionic dyes (reactive black 5 and Congo red) from aqueous solutions using banana peel powder as an adsorbent. Ecotoxicol Environ Saf 148:601–607. https://doi.org/10.1016/j.ecoenv.2017.10.075

    Article  Google Scholar 

  59. Oyekanmi AA, Ahmad A, Hossain K, Rafatullah M (2019) Adsorption of rhodamine B dye from aqueous solution onto acid treated banana peel: response surface methodology, kinetics and isotherm studies. PLoS One 14:e0216878. https://doi.org/10.1371/journal.pone.0216878

    Article  Google Scholar 

  60. Amela K, Hassen MA, Kerroum D (2012) Isotherm and kinetics study of biosorption of cationic dye onto banana peel. Energy Procedia 19:286–295. https://doi.org/10.1016/j.egypro.2012.05.208

    Article  Google Scholar 

  61. Abdulfatai J, Saka AA, Afolabi AS, Micheal O (2012) Development of adsorbent from banana peel for wastewater treatment. Appl Mech Mater 248:310–315. https://doi.org/10.4028/www.scientific.net/AMM.248.310

    Article  Google Scholar 

  62. Dogar S, Nayab S, Farooq MQ, Said A, Kamran R, Duran H, Yameen B (2020) Utilization of biomass fly ash for improving quality of organic dye-contaminated water. ACS Omega 5:15850–15864. https://doi.org/10.1021/acsomega.0c00889

    Article  Google Scholar 

  63. Wekoye JN, Wanyonyi WC, Wangila PT, Tonui MK (2020) Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environ Chem Ecotoxicol 2:24–31. https://doi.org/10.1016/j.enceco.2020.01.004

    Article  Google Scholar 

  64. Crini G, Torri G, Lichtfouse E, Kyzas GZ, Wilson LD, Morin-Crini N (2019) Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environ Chem Lett 17:1645–1666. https://doi.org/10.1007/s10311-019-00903-y

    Article  Google Scholar 

  65. Zhao F, Repo E, Yin D, Sillanpää MET (2013) Adsorption of Cd(II) and Pb(II) by a novel EGTA-modified chitosan material: kinetics and isotherms. J Colloid Interface Sci 409:174–182. https://doi.org/10.1016/j.jcis.2013.07.062

    Article  Google Scholar 

  66. Bhatnagar A, Sillanpää M (2009) Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater — a short review. Adv Colloid Interf Sci 152:26–38. https://doi.org/10.1016/j.cis.2009.09.003

    Article  Google Scholar 

  67. Zhao F, Repo E, Sillanpää M, Meng Y, Yin D, Tang WZ (2015) Green synthesis of magnetic EDTA- and/or DTPA-cross-linked chitosan adsorbents for highly efficient removal of metals. Ind Eng Chem Res 54:1271–1281. https://doi.org/10.1021/ie503874x

    Article  Google Scholar 

  68. Zhao F, Repo E, Yin D, Chen L, Kalliola S, Tang J, Iakovleva E, Tam KC, Sillanpää M (2017) One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Sci Rep 7:15811. https://doi.org/10.1038/s41598-017-16222-7

    Article  Google Scholar 

  69. Mashkoor F, Nasar A (2020) Facile synthesis of polypyrrole decorated chitosan-based magsorbent: characterizations, performance, and applications in removing cationic and anionic dyes from aqueous medium. Int J Biol Macromol 161:88–100. https://doi.org/10.1016/j.ijbiomac.2020.06.015

    Article  Google Scholar 

  70. Zhao F, Yang Z, Wei Z, Spinney R, Sillanpää M, Tang J, Tam M, **ao R (2020) Polyethylenimine-modified chitosan materials for the recovery of La(III) from leachates of bauxite residue. Chem Eng J 388:124307. https://doi.org/10.1016/j.cej.2020.124307

    Article  Google Scholar 

  71. Subedi N, Lähde A, Abu-Danso E, Iqbal J, Bhatnagar A (2019) A comparative study of magnetic chitosan (Chi@Fe3O4) and graphene oxide modified magnetic chitosan (Chi@Fe3O4GO) nanocomposites for efficient removal of Cr(VI) from water. Int J Biol Macromol 137:948–959. https://doi.org/10.1016/j.ijbiomac.2019.06.151

    Article  Google Scholar 

  72. Yusof NH, Foo KY, Hameed BH, Hussin MH, Lee HK, Sabar S (2020) One-step synthesis of chitosan-polyethyleneimine with calcium chloride as effective adsorbent for acid red 88 removal. Int J Biol Macromol 157:648–658. https://doi.org/10.1016/j.ijbiomac.2019.11.218

    Article  Google Scholar 

  73. Sudamalla P, Pichiah S, Manickam M (2012) Responses of surface modeling and optimization of brilliant green adsorption by adsorbent prepared from Citrus limetta peel. Desalin Water Treat 50:367–375. https://doi.org/10.1080/19443994.2012.720119

    Article  Google Scholar 

  74. Saha R, Mukherjee K, Saha I, Ghosh A, Ghosh SK, Saha B (2013) Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res Chem Intermed 39:2245–2257. https://doi.org/10.1007/s11164-012-0754-z

    Article  Google Scholar 

  75. Tomar V, Prasad S, Kumar D (2014) Adsorptive removal of fluoride from aqueous media using Citrus limonum (lemon) leaf. Microchem J 112:97–103. https://doi.org/10.1016/j.microc.2013.09.010

    Article  Google Scholar 

  76. Mohanraj J, Durgalakshmi D, Balakumar S, Aruna P, Ganesan S, Rajendran S, Naushad M (2020) Low cost and quick time absorption of organic dye pollutants under ambient condition using partially exfoliated graphite. J Water Process Eng 34:101078. https://doi.org/10.1016/j.jwpe.2019.101078

    Article  Google Scholar 

  77. Song Y, Peng R, Chen S, **ong Y (2019) Adsorption of crystal violet onto epichlorohydrin modified corncob. Desalin Water Treat 154:376–384. https://doi.org/10.5004/dwt.2019.24067

    Article  Google Scholar 

  78. Ma H, Li J-B, Liu W-W, Miao M, Cheng BJ, Zhu SW (2015) Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal. Bioresour Technol 190:13–20. https://doi.org/10.1016/j.biortech.2015.04.048

    Article  Google Scholar 

  79. Yakout SM, Ali MS (2015) Removal of the hazardous crystal violet dye by adsorption on corncob-based and phosphoric acid-activated carbon. Part Sci Technol 33:621–625. https://doi.org/10.1080/02726351.2015.1016642

    Article  Google Scholar 

  80. Shakoor S, Nasar A (2017) Adsorptive treatment of hazardous methylene blue dye from artificially contaminated water using Cucumis sativus peel waste as a low-cost adsorbent. Groundw Sustain Dev 5:152–159. https://doi.org/10.1016/j.gsd.2017.06.005

    Article  Google Scholar 

  81. Smitha T, Santhi T, Prasad AL, Manonmani S (2017) Cucumis sativus used as adsorbent for the removal of dyes from aqueous solution. Arab J Chem 10:S244–S251. https://doi.org/10.1016/j.arabjc.2012.07.030

    Article  Google Scholar 

  82. Akpotu SO, Moodley B (2018) Effect of synthesis conditions on the morphology of mesoporous silica from elephant grass and its application in the adsorption of cationic and anionic dyes. J Environ Chem Eng 6:5341–5350. https://doi.org/10.1016/j.jece.2018.08.027

    Article  Google Scholar 

  83. Yang J-X, Hong G-B (2018) Adsorption behavior of modified Glossogyne tenuifolia leaves as a potential biosorbent for the removal of dyes. J Mol Liq 252:289–295. https://doi.org/10.1016/j.molliq.2017.12.142

    Article  Google Scholar 

  84. Gülen J, Akın B, Özgür M (2016) Ultrasonic-assisted adsorption of methylene blue on sumac leaves. Desalin Water Treat 57:9286–9295. https://doi.org/10.1080/19443994.2015.1029002

    Article  Google Scholar 

  85. Somasekhara Reddy MC, Nirmala V (2017) Bengal gram seed husk as an adsorbent for the removal of dyes from aqueous solutions – equilibrium studies. Arab J Chem 10:S2406–S2416. https://doi.org/10.1016/j.arabjc.2013.09.002

    Article  Google Scholar 

  86. Mashkoor F, Nasar A (2019) Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. J Mol Liq 274:315–327. https://doi.org/10.1016/j.molliq.2018.10.119

    Article  Google Scholar 

  87. Ogunsina BS, Adegbenjo AO, Opeyemi OO (2010) Compositional, mass-volume-area related and mechanical properties of sponge gourd ( Luffa aegyptiaca ) seeds. Int J Food Prop 13:864–876. https://doi.org/10.1080/10942910902898774

    Article  Google Scholar 

  88. Munagapati VS, Kim DS (2016) Adsorption of anionic azo dye Congo red from aqueous solution by cationic modified orange peel powder. J Mol Liq 220:540–548. https://doi.org/10.1016/j.molliq.2016.04.119

    Article  Google Scholar 

  89. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2005) Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies. J Colloid Interface Sci 288:371–376. https://doi.org/10.1016/j.jcis.2005.03.020

    Article  Google Scholar 

  90. Ahmed M, Mashkoor F, Nasar A (2020) Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution. Groundw Sustain Dev 10:100322. https://doi.org/10.1016/j.gsd.2019.100322

    Article  Google Scholar 

  91. Guiza S (2017) Biosorption of heavy metal from aqueous solution using cellulosic waste orange peel. Ecol Eng 99:134–140. https://doi.org/10.1016/j.ecoleng.2016.11.043

    Article  Google Scholar 

  92. Taha NA, El-maghraby A (2015) Cationic dye removal using prepared magnetic peanut hulls: isotherm and kinetic study. Glob Nest J 22:2–20

    Google Scholar 

  93. Tahir N, Bhatti HN, Iqbal M, Noreen S (2017) Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. Int J Biol Macromol 94:210–220. https://doi.org/10.1016/j.ijbiomac.2016.10.013

    Article  Google Scholar 

  94. Allen SJ, Gan Q, Matthews R, Johnson PA (2005) Mass transfer processes in the adsorption of basic dyes by peanut hulls. Ind Eng Chem Res 44:1942–1949. https://doi.org/10.1021/ie0489507

    Article  Google Scholar 

  95. Tanyildizi MŞ (2011) Modeling of adsorption isotherms and kinetics of reactive dye from aqueous solution by peanut hull. Chem Eng J 168:1234–1240. https://doi.org/10.1016/j.cej.2011.02.021

    Article  Google Scholar 

  96. Guo F, Jiang X, Li X, Jia X, Liang S, Qian L (2020) Synthesis of MgO/Fe3O4 nanoparticles embedded activated carbon from biomass for high-efficient adsorption of malachite green. Mater Chem Phys 240:122240. https://doi.org/10.1016/j.matchemphys.2019.122240

    Article  Google Scholar 

  97. Hameed BH, Mahmoud DK, Ahmad AL (2008) Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids Surf A Physicochem Eng Asp 316:78–84. https://doi.org/10.1016/j.colsurfa.2007.08.033

    Article  Google Scholar 

  98. Argun ME, Güclü D, Karatas M (2014) Adsorption of reactive blue 114 dye by using a new adsorbent: pomelo peel. J Ind Eng Chem 20:1079–1084. https://doi.org/10.1016/j.jiec.2013.06.045

    Article  Google Scholar 

  99. Jain SN, Gogate PR (2017) Acid blue 113 removal from aqueous solution using novel biosorbent based on NaOH treated and surfactant modified fallen leaves of Prunus dulcis. J Environ Chem Eng 5:3384–3394. https://doi.org/10.1016/j.jece.2017.06.047

    Article  Google Scholar 

  100. Jain SN, Gogate PR (2019) Adsorptive removal of azo dye in a continuous column operation using biosorbent based on NaOH and surfactant activation of Prunus dulcis leaves. Desalin Water Treat 141:331–341. https://doi.org/10.5004/dwt.2019.23479

    Article  Google Scholar 

  101. Bhatnagar A, Minocha AK (2009) Adsorptive removal of 2,4-dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement. J Hazard Mater 168:1111–1117. https://doi.org/10.1016/j.jhazmat.2009.02.151

    Article  Google Scholar 

  102. Rao R, Rehman F (2010) Adsorption of heavy metal ions on pomegranate (Punica granatum) peel: removal and recovery of Cr(VI) Ions from a multi-metal ion system. Adsorpt Sci Technol 28:195–211. https://doi.org/10.1260/0263-6174.28.3.195

    Article  Google Scholar 

  103. Chen Y, Zhai S-R, Liu N, Song Y, An QD, Song XW (2013) Dye removal of activated carbons prepared from NaOH-pretreated rice husks by low-temperature solution-processed carbonization and H3PO4 activation. Bioresour Technol 144:401–409. https://doi.org/10.1016/j.biortech.2013.07.002

    Article  Google Scholar 

  104. Shabandokht M, Binaeian E, Tayebi H-A (2016) Adsorption of food dye acid red 18 onto polyaniline-modified rice husk composite: isotherm and kinetic analysis. Desalin Water Treat:1–13. https://doi.org/10.1080/19443994.2016.1172982

  105. Ashrafi SD, Kamani H, Mahvi AH (2016) The optimization study of direct red 81 and methylene blue adsorption on NaOH-modified rice husk. Desalin Water Treat 57:738–746. https://doi.org/10.1080/19443994.2014.979329

    Article  Google Scholar 

  106. Han R, Ding D, Xu Y, Zou W, Wang Y, Li Y, Zou L (2008) Use of rice husk for the adsorption of Congo red from aqueous solution in column mode. Bioresour Technol 99:2938–2946. https://doi.org/10.1016/j.biortech.2007.06.027

    Article  Google Scholar 

  107. de Azevedo ACN, Vaz MG, Gomes RF, Pereira AGB, Fajardo AR, Rodrigues FHA (2017) Starch/rice husk ash based superabsorbent composite: high methylene blue removal efficiency. Iran Polym J 26:93–105. https://doi.org/10.1007/s13726-016-0500-2

    Article  Google Scholar 

  108. Ahmad A, Rafatullah M, Sulaiman O, Ibrahim MH, Hashim R (2009) Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. J Hazard Mater 170:357–365. https://doi.org/10.1016/j.jhazmat.2009.04.087

    Article  Google Scholar 

  109. Abd El-Latif MM, Ibrahim AM (2009) Adsorption, kinetic and equilibrium studies on removal of basic dye from aqueous solutions using hydrolyzed oak sawdust. Desalin Water Treat 6:252–268. https://doi.org/10.5004/dwt.2009.501

    Article  Google Scholar 

  110. Shakoor S, Nasar A (2018) Adsorptive decontamination of synthetic wastewater containing crystal violet dye by employing Terminalia arjuna sawdust waste. Groundw Sustain Dev 7:30–38. https://doi.org/10.1016/j.gsd.2018.03.004

    Article  Google Scholar 

  111. Mashkoor F, Nasar A, Inamuddin AAM (2018) Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using Tectona grandis sawdust as a very low-cost adsorbent. Sci Rep 8:8314. https://doi.org/10.1038/s41598-018-26655-3

    Article  Google Scholar 

  112. Mashkoor F, Nasar A (2019) Polyaniline/Tectona grandis sawdust: a novel composite for efficient decontamination of synthetically polluted water containing crystal violet dye. Groundw Sustain Dev 8:390–401. https://doi.org/10.1016/j.gsd.2018.12.008

    Article  Google Scholar 

  113. Kataria N, Garg VK (2019) Application of EDTA modified Fe3O4/sawdust carbon nanocomposites to ameliorate methylene blue and brilliant green dye laden water. Environ Res 172:43–54. https://doi.org/10.1016/j.envres.2019.02.002

    Article  Google Scholar 

  114. Khattri SD, Singh MK (2009) Removal of malachite green from dye wastewater using neem sawdust by adsorption. J Hazard Mater 167:1089–1094. https://doi.org/10.1016/j.jhazmat.2009.01.101

    Article  Google Scholar 

  115. Hameed BH, Ahmad AL, Latiff KNA (2007) Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigments 75:143–149. https://doi.org/10.1016/j.dyepig.2006.05.039

    Article  Google Scholar 

  116. Yusop MFM, Aziz HA, Ahmad MA (2017) Scavenging remazol brilliant blue R dye using microwave-assisted activated carbon from acacia sawdust: equilibrium and kinetics studies. p 40018

  117. Garg V (2004) Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: a timber industry waste. Dyes Pigments 63:243–250. https://doi.org/10.1016/j.dyepig.2004.03.005

    Article  Google Scholar 

  118. Mashkoor F, Nasar A (2020) Magnetized Tectona grandis sawdust as a novel adsorbent: preparation, characterization, and utilization for the removal of methylene blue from aqueous solution. Cellulose 27:2613–2635. https://doi.org/10.1007/s10570-019-02918-8

    Article  Google Scholar 

  119. Chakraborty S, Chowdhury S, Das SP (2012) Adsorption of crystal violet from aqueous solution onto sugarcane bagasse: central composite design for optimization of process variables. J Water Reuse Desalin 2:55–65. https://doi.org/10.2166/wrd.2012.008

    Article  Google Scholar 

  120. Tahir H, Sultan M, Akhtar N, Hameed U, Abid T (2016) Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution. J Saudi Chem Soc 20:S115–S121. https://doi.org/10.1016/j.jscs.2012.09.007

    Article  Google Scholar 

  121. Fideles RA, Ferreira GMD, Teodoro FS, Adarme OFH, da Silva LHM, Gil LF, Gurgel LVA (2018) Trimellitated sugarcane bagasse: a versatile adsorbent for removal of cationic dyes from aqueous solution. Part I: Batch adsorption in a monocomponent system. J Colloid Interface Sci 515:172–188. https://doi.org/10.1016/j.jcis.2018.01.025

    Article  Google Scholar 

  122. Guimarães Gusmão KA, Alves Gurgel LV, Sacramento Melo TM, Gil LF (2012) Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions - kinetic and equilibrium studies. Dyes Pigments 92:967–974. https://doi.org/10.1016/j.dyepig.2011.09.005

    Article  Google Scholar 

  123. Nethaji S, Sivasamy A, Kumar RV, Mandal AB (2013) Preparation of char from lotus seed biomass and the exploration of its dye removal capacity through batch and column adsorption studies. Environ Sci Pollut Res 20:3670–3678. https://doi.org/10.1007/s11356-012-1267-4

    Article  Google Scholar 

  124. Uddin MK, Nasar A (2020) Walnut shell powder as a low-cost adsorbent for methylene blue dye: isotherm, kinetics, thermodynamic, desorption and response surface methodology examinations. Sci Rep 10:7983. https://doi.org/10.1038/s41598-020-64745-3

    Article  Google Scholar 

  125. Li Z, Hanafy H, Zhang L, Sellaoui L, Schadeck Netto M, Oliveira MLS, Seliem MK, Luiz Dotto G, Bonilla-Petriciolet A, Li Q (2020) Adsorption of Congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations. Chem Eng J 388:124263. https://doi.org/10.1016/j.cej.2020.124263

    Article  Google Scholar 

  126. Hameed BH (2009) Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J Hazard Mater 161:753–759. https://doi.org/10.1016/j.jhazmat.2008.04.019

    Article  Google Scholar 

  127. Bulgariu L, Escudero LB, Bello OS, Iqbal M, Nisar J, Adegoke KA, Alakhras F, Kornaros M, Anastopoulos I (2019) The utilization of leaf-based adsorbents for dyes removal: a review. J Mol Liq 276:728–747. https://doi.org/10.1016/j.molliq.2018.12.001

    Article  Google Scholar 

  128. Uddin MT, Islam MA, Mahmud S, Rukanuzzaman M (2009) Adsorptive removal of methylene blue by tea waste. J Hazard Mater 164:53–60. https://doi.org/10.1016/j.jhazmat.2008.07.131

    Article  Google Scholar 

  129. Jain SN, Tamboli SR, Sutar DS, Jadhav SR, Marathe JV, Shaikh AA, Prajapati AA (2020) Batch and continuous studies for adsorption of anionic dye onto waste tea residue: kinetic, equilibrium, breakthrough and reusability studies. J Clean Prod 252:119778. https://doi.org/10.1016/j.jclepro.2019.119778

    Article  Google Scholar 

  130. Liu L, Fan S, Li Y (2018) Removal behavior of methylene blue from aqueous solution by tea waste: kinetics, isotherms and mechanism. Int J Environ Res Public Health 15:1321. https://doi.org/10.3390/ijerph15071321

    Article  Google Scholar 

  131. Lin D, Wu F, Hu Y, Zhang T, Liu C, Hu Q, Hu Y, Xue Z, Han H, Ko TH (2020) Adsorption of dye by waste black tea powder: parameters, kinetic, equilibrium, and thermodynamic studies. J Chem 2020:1–13. https://doi.org/10.1155/2020/5431046

    Article  Google Scholar 

  132. Cai H, Chen G, Peng C, Zhang ZZ, Dong YY, Shang GZ, Zhu XH, Gao HJ, Wan XC (2015) Removal of fluoride from drinking water using tea waste loaded with Al/Fe oxides: a novel, safe and efficient biosorbent. Appl Surf Sci 328:34–44. https://doi.org/10.1016/j.apsusc.2014.11.164

    Article  Google Scholar 

  133. Wen T, Wang J, Yu S, Chen Z, Hayat T, Wang X (2017) Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(V), Cr(VI), humic acid, and dyes. ACS Sustain Chem Eng 5:4371–4380. https://doi.org/10.1021/acssuschemeng.7b00418

    Article  Google Scholar 

  134. Madrakian T, Afkhami A, Ahmadi M (2012) Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim Acta Part A Mol Biomol Spectrosc 99:102–109. https://doi.org/10.1016/j.saa.2012.09.025

    Article  Google Scholar 

  135. Mahmood T, Aslam M, Naeem A, Siddique T, Din SU (2018) Desorption of As(III) from aqueous solution onto iron impregnated used tea activated carbon: equilibrium, kinetic and thermodynamic study. J Chil Chem Soc 63:3855–3866. https://doi.org/10.4067/s0717-97072018000103855

    Article  Google Scholar 

  136. Shrestha B, Kour J, Ghimire KN (2016) Adsorptive removal of heavy metals from aqueous solution with environmental friendly material—exhausted tea leaves. Adv Chem Eng Sci 6:525–540. https://doi.org/10.4236/aces.2016.64046

    Article  Google Scholar 

  137. Nasuha N, Hameed BH, Din ATM (2010) Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. J Hazard Mater 175:126–132. https://doi.org/10.1016/j.jhazmat.2009.09.138

    Article  Google Scholar 

  138. Foroughi-Dahr M, Abolghasemi H, Esmaili M, Shojamoradi A, Fatoorehchi H (2015) Adsorption characteristics of Congo red from aqueous solution onto tea waste. Chem Eng Commun 202:181–193. https://doi.org/10.1080/00986445.2013.836633

    Article  Google Scholar 

  139. Balkaya N (2019) Biosorption of dye from aqueous solutions by a waste lignocellulosic material. In: Balkaya N, Guneysu S (eds) Recycling and reuse approaches for better sustainability, Environmental Science and Engineering. Springer, Cham., pp 277–295. https://doi.org/10.1007/978-3-319-95888-0_23

  140. Khan MMR, Rahman MW, Ong HR, Ismail AB, Cheng CK (2016) Tea dust as a potential low-cost adsorbent for the removal of crystal violet from aqueous solution. Desalin Water Treat 57:14728–14738. https://doi.org/10.1080/19443994.2015.1066272

    Article  Google Scholar 

  141. Özbaş EE, Öngen A, Gökçe CE (2013) Removal of astrazon red 6B from aqueous solution using waste tea and spent tea bag. Desalin Water Treat 51:7523–7535. https://doi.org/10.1080/19443994.2013.792161

    Article  Google Scholar 

  142. Akpomie KG, Conradie J (2020) Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environ Chem Lett 18:1085–1112. https://doi.org/10.1007/s10311-020-00995-x

    Article  Google Scholar 

  143. Zuorro A, Lavecchia R, Medici F, Piga L (2013) Spent tea leaves as a potential low-cost adsorbent for the removal of azo dyes from wastewater. Chem Eng Trans 32:19–24. https://doi.org/10.3303/CET1332004

    Article  Google Scholar 

  144. Jain SN, Tamboli SR, Sutar DS, Jadhav SR, Marathe JV, Mawal VN (2020) Kinetic, equilibrium, thermodynamic, and desorption studies for sequestration of acid dye using waste biomass as sustainable adsorbents. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00780-4

  145. Khosla E, Kaur S, Dave PN (2013) Tea waste as adsorbent for ionic dyes. Desalin Water Treat 51:6552–6561. https://doi.org/10.1080/19443994.2013.791776

    Article  Google Scholar 

  146. Hussain S, Anjali KP, Hassan ST, Dwivedi PB (2018) Waste tea as a novel adsorbent: a review. Appl Water Sci 8:165. https://doi.org/10.1007/s13201-018-0824-5

    Article  Google Scholar 

  147. Ahmaruzzaman M, Gayatri SL (2010) Activated tea waste as a potential low-cost adsorbent for the removal of p-nitrophenol from wastewater. J Chem Eng Data 55:4614–4623. https://doi.org/10.1021/je100117s

    Article  Google Scholar 

  148. Zuorro A, Laura M, Lavecchia R (2013) Tea waste: a new adsorbent for the removal of reactive dyes from textile wastewater. Adv Mater Res 803:26–29. https://doi.org/10.4028/www.scientific.net/AMR.803.26

    Article  Google Scholar 

  149. Giahi M, Rakhshaee R, Bagherinia MA (2011) Removal of methylene blue by tea wastages from the synthesis waste waters. Chin Chem Lett 22:225–228. https://doi.org/10.1016/j.cclet.2010.07.030

    Article  Google Scholar 

  150. Hossain MA, Alam MS (2012) Adsorption kinetics of rhodamine-B on used black tea leaves. Iran J Environ Health Sci Eng 9:2. https://doi.org/10.1186/1735-2746-9-2

    Article  Google Scholar 

  151. Khan RJ, Saqib ANS, Farooq R, Khan R, Siddique M (2018) Removal of Congo red from aqueous solutions by spent black tea as adsorbent. J Water Chem Technol 40:206–212. https://doi.org/10.3103/S1063455X18040057

    Article  Google Scholar 

  152. Weng C-H, Lin Y-T, Chen Y-J, Sharma YC (2013) Spent green tea leaves for decolourisation of raw textile industry wastewater. Color Technol 129:298–304. https://doi.org/10.1111/cote.12029

    Article  Google Scholar 

  153. Bajpai SK, Jain A (2010) Sorptive removal of crystal violet from aqueous solution using spent tea leaves: part I optimization of sorption conditions and kinetic studies. Acta Chim Slov 57:751–757

    Google Scholar 

  154. Burcǎ S, Mǎicǎneanu A, Indolean C (2016) A green approach: Malachite green adsorption onto waste green tea biomass. Isotherm and kinetic studies. Rev Roum Chim 61:541–547

    Google Scholar 

  155. Li L, Li X, Yan C, Guo W, Yang T, Fu J, Tang J, Hu C (2014) Optimization of methyl orange removal from aqueous solution by response surface methodology using spent tea leaves as adsorbent. Front Environ Sci Eng 8:496–502. https://doi.org/10.1007/s11783-013-0578-0

    Article  Google Scholar 

  156. Foroughi-dahr M, Esmaieli M, Abolghasemi H, Shojamoradi A, Sadeghi Pouya E (2016) Continuous adsorption study of Congo red using tea waste in a fixed-bed column. Desalin Water Treat 57:8437–8446. https://doi.org/10.1080/19443994.2015.1021849

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Nasar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasar, A. Utilization of tea wastes for the removal of toxic dyes from polluted water—a review. Biomass Conv. Bioref. 13, 1399–1415 (2023). https://doi.org/10.1007/s13399-020-01205-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01205-y

Keywords

Navigation