Log in

Daclizumab Therapy for Multiple Sclerosis

  • Published:
Neurotherapeutics

Abstract

Daclizumab is a humanized monoclonal antibody of IgG1 subtype that binds to the Tac epitope on the interleukin-2 (IL-2) receptor α-chain (CD25), thus, effectively blocking the formation of the high-affinity IL-2 receptor. Because the high-affinity IL-2 receptor signaling promotes expansion of activated T cells in vitro, daclizumab was designed as a therapy that selectively inhibits T-cell activation. Assuming the previous statement, daclizumab received regulatory approval as add-on therapy to standard immunosuppressive regimen for the prevention of acute allograft rejection in renal transplantation. Based on its putative mechanism of action (MOA), daclizumab represented an ideal therapy for T-cell-mediated autoimmune diseases and was subsequently tested in inflammatory uveitis and multiple sclerosis (MS). In both of these diseases, daclizumab therapy significantly inhibited target organ inflammation. Mechanistic studies in MS demonstrated that the MOA of daclizumab is surprisingly broad and that the drug exerts unexpected effects on multiple components of the innate immune system. Specifically, daclizumab dramatically expands and activates immunoregulatory CD56bright NK cells, which gain access to the intrathecal compartment in MS and can kill autologous activated T cells. Daclizumab also blocks trans-presentation of IL-2 by mature dendritic cells to primed T cells, resulting in profound inhibition of antigen-specific T cells. Finally, daclizumab modulates the development of innate lymphoid cells. In conclusion, daclizumab therapy, which is currently in phase III testing for inflammatory MS, has a unique MOA that does not limit migration of immune cells into the intrathecal compartment, but rather provides multifactorial immunomodulatory effects with resultant inhibition of MS-related inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ruscetti FW, Morgan DA, Gallo RC. Functional and morphologic characterization of human T cells continuously grown in vitro. J Immunol 1977;119:131-138.

    PubMed  CAS  Google Scholar 

  2. Mizel SB, Farrar JJ. Revised nomenclature for antigen-nonspecific T-cell proliferation and helper factors. Cell Immunol 1979;48:433-436.

    Article  PubMed  CAS  Google Scholar 

  3. Feinerman O, Jentsch G, Tkach KE, et al. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol Syst Biol 2010;6:437.

    Article  PubMed  CAS  Google Scholar 

  4. Waldmann TA, Kozak RW, Tsudo M, Oh-ishi T, Bongiovanni KF, Goldman CK. IL-2 receptors in adult T-cell leukemia: a target for immunotherapy. Hamatol Bluttransfus 1987;31:110-115.

    CAS  Google Scholar 

  5. Waldmann TA, O'Shea J. The use of antibodies against the IL-2 receptor in transplantation. Curr Opin Immunol 1998;10:507-512.

    Article  PubMed  CAS  Google Scholar 

  6. Waldmann TA. The IL-2/IL-15 receptor systems: targets for immunotherapy. J Clin Immunol 2002;22:51-56.

    Article  PubMed  CAS  Google Scholar 

  7. Queen C, Schneider WP, Selick HE, et al. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A 1989;86:10029-10033.

    Article  PubMed  CAS  Google Scholar 

  8. Wang X, Rickert M, Garcia KC. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 2005;310:1159-1163.

    Article  PubMed  CAS  Google Scholar 

  9. Waldmann T, Tagaya Y, Bamford R. Interleukin-2, interleukin-15, and their receptors. Int Rev Immunol 1998;16:205-226.

    Article  PubMed  CAS  Google Scholar 

  10. Setoguchi R, Hori S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005;201:723-735.

    Article  PubMed  CAS  Google Scholar 

  11. Rickert M, Wang X, Boulanger MJ, Goriatcheva N, Garcia KC. The structure of interleukin-2 complexed with its alpha receptor. Science 2005;308:1477-1480.

    Article  PubMed  CAS  Google Scholar 

  12. Waldmann TA, Goldman CK, Bongiovanni KF, et al. Therapy of patients with human T-cell lymphotrophic virus I-induced adult T-cell leukemia with anti-Tac, a monoclonal antibody to the receptor for interleukin-2. Blood 1988;72:1805-1816.

    PubMed  CAS  Google Scholar 

  13. Martin JF, Perry JS, Jakhete NR, Wang X, Bielekova B. An IL-2 paradox: blocking CD25 on T cells induces IL-2-driven activation of CD56(bright) NK cells. J Immunol 2010;185:1311-1320.

    Article  PubMed  CAS  Google Scholar 

  14. Goebel J, Stevens E, Forrest K, Roszman TL. Daclizumab (Zenapax) inhibits early interleukin-2 receptor signal transduction events. Transpl Immunol 2000;8:153-159.

    Article  PubMed  CAS  Google Scholar 

  15. Lehky TJ, Levin MC, Kubota R, et al. Reduction in HTLV-I proviral load and spontaneous lymphoproliferation in HTLV-I-associated myelopathy/tropical spastic paraparesis patients treated with humanized anti-Tac. Ann Neurol 1998;44:942-947.

    Article  PubMed  CAS  Google Scholar 

  16. Nussenblatt RB, Fortin E, Schiffman R, et al. Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb: a phase I/II clinical trial. Proc Natl Acad Sci U S A 1999;96:7462-7466.

    Article  PubMed  CAS  Google Scholar 

  17. Nussenblatt RB, Thompson DJ, Li Z, et al. Humanized anti-interleukin-2 (IL-2) receptor alpha therapy: long-term results in uveitis patients and preliminary safety and activity data for establishing parameters for subcutaneous administration. J Autoimmun 2003;21:283-293.

    Article  PubMed  CAS  Google Scholar 

  18. Bielekova B, Richert N, Howard T, et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon-beta. Proc Natl Acad Sci U S A 2004;101:8705-8708.

    Article  PubMed  CAS  Google Scholar 

  19. Rose JW, Watt HE, White AT, Carlson NG. Treatment of multiple sclerosis with an anti-interleukin-2 receptor monoclonal antibody. Ann Neurol 2004;56:864-867.

    Article  PubMed  CAS  Google Scholar 

  20. Bielekova B, Howard T, Packer AN, et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch Neurol 2009;66:483-489.

    Article  PubMed  Google Scholar 

  21. Rose JW, Burns JB, Bjorklund J, Klein J, Watt HE, Carlson NG. Daclizumab phase II trial in relapsing and remitting multiple sclerosis: MRI and clinical results. Neurology 2007;69:785-789.

    Article  PubMed  CAS  Google Scholar 

  22. Bielekova B, Richert N, Herman ML, et al. Intrathecal effects of daclizumab treatment of multiple sclerosis. Neurology 2011;77:1877-1886.

    Article  PubMed  CAS  Google Scholar 

  23. Wynn D, Kaufman M, Montalban X, et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon beta. Lancet Neurol 2010;9:381-390.

    Article  PubMed  CAS  Google Scholar 

  24. Bielekova B, Becker B. Monoclonal antibodies in MS: mechanism of action. Neurology 2010;74(supplement 1):S31-S40.

    Article  PubMed  CAS  Google Scholar 

  25. Wakabayashi K, Lian ZX, Moritoki Y, et al. IL-2 receptor alpha(-/-) mice and the development of primary biliary cirrhosis. Hepatology 2006;44:1240-1249.

    Article  PubMed  CAS  Google Scholar 

  26. Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995;3:521-530.

    Article  PubMed  CAS  Google Scholar 

  27. Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 1991;352:621-624.

    Article  PubMed  CAS  Google Scholar 

  28. Kundig TM, Schorle H, Bachmann MF, Hengartner H, Zinkernagel RM, Horak I. Immune responses in interleukin-2-deficient mice. Science 1993;262:1059-1061.

    Article  PubMed  CAS  Google Scholar 

  29. Suzuki H, Kundig TM, Furlonger C, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 1995;268:1472-1476.

    Article  PubMed  CAS  Google Scholar 

  30. Turka LA, Walsh PT. IL-2 signaling and CD4+ CD25+ Foxp3+ regulatory T cells. Front Biosci 2008;13:1440-1446.

    Article  PubMed  CAS  Google Scholar 

  31. Shevach EM, McHugh RS, Piccirillo CA, Thornton AM. Control of T-cell activation by CD4+ CD25+ suppressor T cells. Immunol Rev 2001;182:58-67.

    Article  PubMed  CAS  Google Scholar 

  32. Malek TR. The main function of IL-2 is to promote the development of T regulatory cells. J Leukoc Biol 2003;74:961-965.

    Article  PubMed  CAS  Google Scholar 

  33. Almeida AR, Legrand N, Papiernik M, Freitas AA. Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol 2002;169:4850-4860.

    PubMed  Google Scholar 

  34. Van Parijs L, Refaeli Y, Lord JD, Nelson BH, Abbas AK, Baltimore D. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 1999;11:281-288.

    Article  PubMed  Google Scholar 

  35. Lenardo MJ. Interleukin-2 programs mouse T lymphocytes for apoptosis. Nature 1991;353:858-861.

    Article  PubMed  CAS  Google Scholar 

  36. Hafler DA, Compston A, Sawcer S, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007;357:851-862.

    Article  PubMed  CAS  Google Scholar 

  37. Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine map** and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet 2007;39:1074-1082.

    Article  PubMed  CAS  Google Scholar 

  38. Maier LM, Lowe CE, Cooper J, et al. IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production. PLoS genetics 2009;5:e1000322.

    Article  PubMed  Google Scholar 

  39. Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol 2007;119:482-487.

    Article  PubMed  CAS  Google Scholar 

  40. Roifman CM. Human IL-2 receptor alpha chain deficiency. Pediatr Res 2000;48:6-11.

    Article  PubMed  CAS  Google Scholar 

  41. Sharfe N, Dadi HK, Shahar M, Roifman CM. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A 1997;94:3168-3171.

    Article  PubMed  CAS  Google Scholar 

  42. Bielekova B, Catalfamo M, Reichert-Scrivner S, et al. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2R-alpha-targeted therapy (daclizumab) in multiple sclerosis. PNAS 2006;103:5941-5946.

    Article  PubMed  CAS  Google Scholar 

  43. Oh U, Blevins G, Griffith C, et al. Regulatory T cells are reduced during anti-CD25 antibody treatment of multiple sclerosis. Arch Neurol 2009;66:471-479.

    Article  PubMed  Google Scholar 

  44. Baan CC, Balk AH, van Riemsdijk IC, et al. Anti-CD25 monoclonal antibody therapy affects the death signals of graft-infiltrating cells after clinical heart transplantation. Transplantation 2003;75:1704-1710.

    Article  PubMed  CAS  Google Scholar 

  45. Wuest SC, Edwan JH, Martin JF, et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med 2011;17:604-609.

    Article  PubMed  CAS  Google Scholar 

  46. Biron CA, Brossay L. NK cells and NKT cells in innate defense against viral infections. Curr Opin Immunol 2001;13:458-464.

    Article  PubMed  CAS  Google Scholar 

  47. Orange JS. Unraveling human natural killer cell deficiency. J Clin Invest 2012;122:798-801.

    Article  PubMed  Google Scholar 

  48. Caligiuri MA. Human natural killer cells. Blood 2008;112:461-469.

    Article  PubMed  CAS  Google Scholar 

  49. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001;22:633-640.

    Article  PubMed  CAS  Google Scholar 

  50. Nishikawa K, Saito S, Morii T, et al. Accumulation of CD16-CD56+ natural killer cells with high affinity interleukin 2 receptors in human early pregnancy decidua. Int Immunol 1991;3:743-750.

    Article  PubMed  CAS  Google Scholar 

  51. Guleria I, Sayegh MH. Maternal acceptance of the fetus: true human tolerance. J Immunol 2007;178:3345-3351.

    PubMed  CAS  Google Scholar 

  52. Jacobs R, Hintzen G, Kemper A, et al. CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 2001;31:3121-3127.

    Article  PubMed  CAS  Google Scholar 

  53. Fehniger TA, Cooper MA, Nuovo GJ, et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 2003;101:3052-3057.

    Article  PubMed  CAS  Google Scholar 

  54. Saito S, Nishikawa K, Morii T, et al. Cytokine production by CD16-CD56bright natural killer cells in the human early pregnancy decidua. Int Immunol 1993;5:559-563.

    Article  PubMed  CAS  Google Scholar 

  55. Moretta L, Biassoni R, Bottino C, et al. Human NK cells and their receptors. Microbes Infect 2002;4:1539-1544.

    Article  PubMed  CAS  Google Scholar 

  56. Kaiser BK, Pizarro JC, Kerns J, Strong RK. Structural basis for NKG2A/CD94 recognition of HLA-E. Proc Natl Acad Sci U S A 2008;105:6696-6701.

    Article  PubMed  CAS  Google Scholar 

  57. Jiang W, Chai NR, Maric D, Bielekova B. Unexpected Role for Granzyme K in CD56bright NK Cell-Mediated Immunoregulation of Multiple Sclerosis. J Immunol 2011;187:781-790.

    Article  PubMed  CAS  Google Scholar 

  58. Bovenschen N, Quadir R, van den Berg AL, et al. Granzyme K displays highly restricted substrate specificity that only partially overlaps with granzyme A. J Biol Chem 2009;284:3504-3512.

    Article  PubMed  CAS  Google Scholar 

  59. Bratke K, Kuepper M, Bade B, Virchow JC Jr., Luttmann W. Differential expression of human granzymes A, B, and K in natural killer cells and during CD8+ T cell differentiation in peripheral blood. Eur J Immunol 2005;35:2608-2616.

    Article  PubMed  CAS  Google Scholar 

  60. Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 1994;8:652-658.

    PubMed  CAS  Google Scholar 

  61. Dalbeth N, Gundle R, Davies RJ, Lee YC, McMichael AJ, Callan MF. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol 2004;173:6418-6426.

    PubMed  CAS  Google Scholar 

  62. Rubenstein JL, Combs D, Rosenberg J, et al. Rituximab therapy for CNS lymphomas: targeting the leptomeningeal compartment. Blood 2003;101:466-468.

    Article  PubMed  CAS  Google Scholar 

  63. Perry JS, Han S, Xu Q, et al. Inhibition of LTi cell development by CD25 blockade Is associated with decreased intrathecal inflammation in multiple sclerosis. Sci Transl Med 2012;4:145ra06.

    Article  Google Scholar 

  64. Caligiuri MA, Zmuidzinas A, Manley TJ, Levine H, Smith KA, Ritz J. Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinity receptors. J Exp Med 1990;171:1509-1526.

    Article  PubMed  CAS  Google Scholar 

  65. Elkins J, Sheridan J, Armaravadi L, Riester K, O'Neil G. CD56bright natural killer cell expansion predicts response to daclizumab HYP treatment in RRMS: Results of the SELECT trial. Neurology 2012;78:S31.004.

    Article  Google Scholar 

  66. Vandenbark AA, Huan J, Agotsch M, et al. Interferon-beta-1a treatment increases CD56bright natural killer cells and CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. J Neuroimmunol 2009;215:125-128.

    Article  PubMed  CAS  Google Scholar 

  67. Reis EA, Athanazio DA, Lima I, et al. NK and NKT cell dynamics after rituximab therapy for systemic lupus erythematosus and rheumatoid arthritis. Rheumatol Int 2008;29(4):469-475.

    Google Scholar 

  68. De Jager PL, Rossin E, Pyne S, et al. Cytometric profiling in multiple sclerosis uncovers patient population structure and a reduction of CD8low cells. Brain 2008;131(pt 7):1701-1711.

    Article  PubMed  Google Scholar 

  69. Benczur M, Petranyl GG, Palffy G, et al. Dysfunction of natural killer cells in multiple sclerosis: a possible pathogenetic factor. Clin Exp Immunol 1980;39:657-662.

    PubMed  CAS  Google Scholar 

  70. Kastrukoff LF, Morgan NG, Zecchini D, et al. A role for natural killer cells in the immunopathogenesis of multiple sclerosis. J Neuroimmunol 1998;86:123-133.

    Article  PubMed  CAS  Google Scholar 

  71. French AR, Yokoyama WM. Natural killer cells and autoimmunity. Arthritis Res Ther 2004;6:8-14.

    Article  PubMed  CAS  Google Scholar 

  72. Granucci F, Vizzardelli C, Pavelka N, et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2001;2:882-888.

    Article  PubMed  CAS  Google Scholar 

  73. Driesen J, Popov A, Schultze JL. CD25 as an immune regulatory molecule expressed on myeloid dendritic cells. Immunobiology 2008;213:849-858.

    Article  PubMed  CAS  Google Scholar 

  74. Dubois S, Mariner J, Waldmann TA, Tagaya Y. IL-15-Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 2002;17:537-547.

    Article  PubMed  CAS  Google Scholar 

  75. Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 2006;441:890-893.

    Article  PubMed  CAS  Google Scholar 

  76. Savo AM, Book BK, Henson S, Hakimi J, Pescovitz MD. Daclizumab rapidly saturates interleukin-2 receptor-alpha (CD25) on lymph node lymphocytes in children. Transplant Proc 1999;31:1182-1183.

    Article  PubMed  CAS  Google Scholar 

  77. Sawa S, Cherrier M, Lochner M, et al. Lineage relationship analysis of RORgammat+ innate lymphoid cells. Science 2010;330:665-669.

    Article  PubMed  CAS  Google Scholar 

  78. Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol 2011;12:21-27.

    Article  PubMed  CAS  Google Scholar 

  79. Yokota Y, Mansouri A, Mori S, et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 1999;397:702-706.

    Article  PubMed  CAS  Google Scholar 

  80. Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 2006;6:205-217.

    Article  PubMed  CAS  Google Scholar 

  81. Lochner M, Ohnmacht C, Presley L, et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORgamma t and LTi cells. J Exp Med 2011;208:125-134.

    Article  PubMed  CAS  Google Scholar 

  82. Withers DR, Gaspal FM, Mackley EC, et al. Cutting edge: lymphoid tissue inducer cells maintain memory cd4 t cells within secondary lymphoid tissue. J Immunol 2012;189(5):2094-2098.

    Google Scholar 

  83. Lane PJ, Gaspal FM, McConnell FM, Kim MY, Anderson G, Withers DR. Lymphoid tissue inducer cells: innate cells critical for CD4(+) T cell memory responses? Ann N Y Acad Sci 2012;1247:1-15.

    Article  PubMed  CAS  Google Scholar 

  84. Howell OW, Reeves CA, Nicholas R, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011;134(9):2755-2771.

    Google Scholar 

  85. Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007;130(pt 4):1089-1104.

    PubMed  Google Scholar 

  86. Magliozzi R, Columba-Cabezas S, Serafini B, Aloisi F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 2004;148:11-23.

    Article  PubMed  CAS  Google Scholar 

  87. Scheibenbogen C, Keilholz U, Richter M, Andreesen R, Hunstein W. The interleukin-2 receptor in human monocytes and macrophages: regulation of expression and release of the alpha and beta chains (p55 and p75). Res Immunol 1992;143:33-37.

    Article  PubMed  CAS  Google Scholar 

  88. Kniep EM, Strelow I, Lohmann-Matthes ML. The monocyte interleukin-2 receptor light chain: production of cell-associated and soluble interleukin-2 receptor by monocytes. Immunology 1992;75:299-304.

    PubMed  CAS  Google Scholar 

  89. Maier LM, Anderson DE, Severson CA, et al. Soluble IL-2RA levels in multiple sclerosis subjects and the effect of soluble IL-2RA on immune responses. J Immunol 2009;182:1541-1547.

    PubMed  CAS  Google Scholar 

  90. Mesarovic MD, Sreenath SN, Keene JD. Search for organising principles: understanding in systems biology. Syst Biol (Stevenage) 2004;1:19-27.

    Article  CAS  Google Scholar 

  91. Schneider R, Arbour N. Journal club: intrathecal effects of daclizumab treatment of multiple sclerosis. Neurology 2012;78:e131-e133.

    Article  PubMed  Google Scholar 

  92. Liu J, Wang L, Zhan SY, **a Y. Daclizumab for relapsing remitting multiple sclerosis. Cochrane Database Syst Rev 2012;4:CD008127.

    Google Scholar 

  93. Gold R, Giovannoni G, Selmaj K, et al. A randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of daclizumab HYP monotherapy in relapsing-remitting multiple sclerosis: primary results of the SELECT trial. Neurology 2012;78:S01.005.

    Article  Google Scholar 

  94. Moroso V, Metselaar HJ, Mancham S, et al. Liver grafts contain a unique subset of natural killer cells that are transferred into the recipient after liver transplantation. Liver Transpl 2010;16:895-908.

    Article  PubMed  Google Scholar 

  95. Hengster P, Pescovitz MD, Hyatt D, Margreiter R. Cytomegalovirus infections after treatment with daclizumab, an anti IL-2 receptor antibody, for prevention of renal allograft rejection. Roche Study Group. Transplantation 1999;68:310-313.

    CAS  Google Scholar 

  96. Webster AC, Playford EG, Higgins G, Chapman JR, Craig JC. Interleukin 2 receptor antagonists for renal transplant recipients: a meta-analysis of randomized trials. Transplantation 2004;77:166-176.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke (NINDS). B.B. is a co-inventor of the National Institutes of Health patents related to daclizumab therapy, and as such has received patent royalty payments.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibiana Bielekova.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielekova, B. Daclizumab Therapy for Multiple Sclerosis. Neurotherapeutics 10, 55–67 (2013). https://doi.org/10.1007/s13311-012-0147-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-012-0147-4

Keywords

Navigation