Log in

Technological, functional and safety aspects of enterococci in fermented vegetable products: a mini-review

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Bacteria belonging to the genus Enterococcus spp.—a member of the lactic acid bacteria group—are natural inhabitants of various environments, including vegetable products. Although some strains show pathogenic determinants, overall these bacteria may have some pro-technological features. Some enterococci have been described as potential starter or protective cultures in the dairy industry, since they contribute to the organoleptic and quality characteristics of dairy products. Although several fermented vegetable products have a long history in human nutrition, studies regarding autochthonous enterococci and their application to fermented vegetable foods are much less numerous than those concerning dairy foods. In this review, after a general overview of enterococci, their presence and role in fermented vegetable foods (including table olives, sauerkraut, kimchi, tomato juice, French beans, caper berries and cereal-based products) will be covered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

E:

Enterococcus

L:

Lactobacillus

References

  • Abriouel H, Ben Omar N, Molinos AC, López RL, Grande MJ, Martinéz Viedna P, Ortega E, Martinéz Cañamero M, Gálvez A (2008a) Comparative analysis of genetic diversity and incidence of virulence factors and antibiotic resistance among enterococcal populations from raw fruit and vegetable foods, water and soil, and clinical samples. Int J Food Microbiol 123:38–49

    Article  PubMed  CAS  Google Scholar 

  • Abriouel H, Ben Omar N, Pérez Pulido R, Lucas R, Ortega E, Martinéz Cañamero M, Galvez A (2008b) Vegetable fermentation. In: Cocolin and Ercolini D (eds) Molecular techniques in the microbial ecology of fermented foods. Springer, Berlin, pp 145–161

  • Abriouel H, Ben Omar N, Lucas R, Gálvez A (2011) Culture-independent study of the diversity of microbial population in brines during fermentation of naturally-fermented Aloreña green table olives. Int J Food Microbiol 144:487–496

    Article  PubMed  CAS  Google Scholar 

  • Basanta A, Sánchez J, Gómez Sala B, Herranz C, Hernández PE, Cintas LM (2008) Antimicrobial activity of Enterococcus feacium L50, a strain producing enterocins L50 (L50A and L50b), P and Q against beer-spoilage lactic acid bacteria in broth, wort (hopped and unhopped), and alcoholic and non-alcoholic lager beers. Int J Food Microbiol 125:293–307

    Article  PubMed  CAS  Google Scholar 

  • Bayoub K, Mardad I, Ammar A, Serrano A, Soukri A (2011) Isolation and purification of two bacteriocins 3D produced by Enterococcus faecium with inhibitory activity against Listeria monocytogenes. Curr Microbiol 62:479–485

    Article  PubMed  CAS  Google Scholar 

  • Ben Omar N, Ampe F (2000) Microbial community dynamics during production of the Mexican fermented maize dough Pozol. Appl Environ Microbiol 66:3664–3673

    Article  PubMed  CAS  Google Scholar 

  • Ben Omar N, Castro A, Lucas R, Abriouel H, Yousif NM, Franz CM, Holzapfel WH, Perez Pulido R, Martinez Cañamero M, Galvez A (2004) Functional and safety aspects of Enterococci isolated from different Spanish foods. Syst Appl Microbiol 27:118–130

    Article  PubMed  CAS  Google Scholar 

  • Bhardwaj A, Malik RK, Chauchan P (2008) Functional and safety aspects of enterococci in dairy foods. Indian J Microbiol 48:317–325

    Article  Google Scholar 

  • Bhardwaj A, Gupta H, Kapila S, Kaur G, Vij S, Malik RK (2010) Safety assessement and evaluation of probiotic potential of bacteriocinogenic Enterococcus faecium KH 24 strain under in vitro and in vivo conditions. Int J Food Microbiol 141:156–164

    Article  PubMed  Google Scholar 

  • Blandino A, Al Aseeri ME, Pandiella SS, Cantero D, Webb C (2003) Cereal based fermented foods and beverages. Food Res Int 36:527–543

    Article  CAS  Google Scholar 

  • Botes M, Van Reenen CA, Dicks LMT (2008) Evaluation of Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 as probiotics by using a gastro-intestinal model with infant milk formulation as substrate. Int J Food Microbiol 128:362–370

    Article  PubMed  CAS  Google Scholar 

  • Buckenhüskes HJ (1997) Fermented vegetables. In: Doyle PD, Beuchat LR, Montville TJ (eds) Food microbiology: fundamentals and frontiers, 2nd edn. ASM Press, Washington DC, pp 595–609

    Google Scholar 

  • Carlos AR, Semedo-Lemsaddek T, Barreto-Crespo MT, Tenreiro R (2010) Transcriptional analysis of virulence-related genes in enterococci from distinct origins. J Appl Microbiol 108:1563–1575

    Article  PubMed  CAS  Google Scholar 

  • Chamba JF, Jamet E (2008) Contribution to the safety assessment of technological microflora found in fermented dairy products. Int J Food Microbiol 126:263–266

    Article  PubMed  Google Scholar 

  • Chao SH, Tomii Y, Watanabe K, Tsai YC (2008) Diversity of lactic acid bacteria in fermented brines used to make stinky tofu. Int J Food Microbiol 123:134–141

    Article  PubMed  CAS  Google Scholar 

  • Chen YS, Yanagida F, Srionnual S (2006) Characteristics of bacteriocin-like inhibitory substances from dochi-isolated Enterococcus faecium D081821 and D081833. Lett Appl Microbiol 44:320–325

    Article  CAS  Google Scholar 

  • Cho J, Lee D, Yang C, Jeon J, Kim J, Han H (2006) Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol Lett 257:262–267

    Article  PubMed  CAS  Google Scholar 

  • Chun J, Jeong WJ, Kim JS, Lim J, Park ChS, Kwon DY, Choi I, Kim JH (2008) Hydrolysis of isoflavone glucosides in soymilk fermented with single mixed cultures of Lactobacillus paraplantarum KM, Weisella sp. 33, and Enterococcus faecium 35 isolated from humans. J Microbiol Biotechnol 18:573–578

    PubMed  CAS  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  PubMed  CAS  Google Scholar 

  • Collar C, Mascaros AF, Benedito De Barber C (1992) Amino acid metabolism by yeasts and lactic acid bacteria during bread fermentation. J Food Sci 57:1423–1427

    Article  CAS  Google Scholar 

  • Coppola S, Pepe O, Mauriello G (1998) Effect of leavening microflora on pizza dough properties. J Appl Microbiol 85:891–897

    Article  PubMed  CAS  Google Scholar 

  • Corsetti A, Settani L, Lopez CC, Felis GE, Mastrangelo M, Suzzi G (2007a) A taxonomic survey of lactic acid bacteria isolated from wheat (Triticium durum) kernels and non-conventional flours. Syst Appl Microbiol 30:561–571

    Article  PubMed  CAS  Google Scholar 

  • Corsetti A, Settani L, Valmorri S, Mastrangelo M, Suzzi G (2007b) Identification of subdominant sourdough lactic acid bacteria and their evolution during laboratory-scale fermentations. Food Microbiol 24:592–600

    Article  PubMed  CAS  Google Scholar 

  • Corsetti A, Settani L, Braga TM, Lopez MFS, Suzzi G (2008) An investigation of the bacteriocinogenic potential of lactic acid bacteria associated with wheat (Triticium durum) kernels and non-conventional flours. LWT-Food Sci Technol 41:1173–1182

    Article  CAS  Google Scholar 

  • De Bellis P, Valerio F, Sisto A, Lonigro SL, Lavermicocca P (2010) Probiotic table olives: Microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. Int J Food Microbiol 140:6–13

    Article  PubMed  CAS  Google Scholar 

  • De Castro A, Montaño A, Casado FJ, Sánchez AH, Rejano L (2002) Utilisation of Enterococcus casseliflavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol 19:637–644

    Article  CAS  Google Scholar 

  • De Vuyst D, Neysens P (2005) The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci Technol 16:43–56

    Article  CAS  Google Scholar 

  • De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26:666–675

    Article  PubMed  CAS  Google Scholar 

  • Di Cagno R, Surico RF, Siragusa S, De Angelis M, Paradiso A, Minervini F, De Gara L, Gobbetti M (2008) Selection and use of authochtonous mixed starter for lactic acid fermentation of carrots, French beans or marrows. Int J Food Microbiol 127:220–228

    Article  PubMed  CAS  Google Scholar 

  • Di Cagno R, Surico RF, Paradiso A, De Angelis M, Salmon JC, Buchin S, De Gara L, Gobbetti M (2009) Effect of autochtonous lactic acid bacteria starters on health-promotiing and sensory properties of tomato juices. Int J Food Microbiol 128:473–483

    Article  PubMed  CAS  Google Scholar 

  • Domann E, Hain T, Ghai R, Billion A, Kuenne C, Zimmermann K, Chakraborty T (2007) Comparative genomic analysis for the presence of potential enterococcal virulence factors in the probiotic Enterococcus faecalis strain Symbioflor. Int J Med Microbiol 297:533–539

    Article  PubMed  CAS  Google Scholar 

  • Ebine H (1990) Functions of Miso. J Brew Soc Jpn 85:70–75

    Google Scholar 

  • El-Ghaisha S, Ahmadova A, Hadji-Sfaxi I, El Mecherfi KE, Bazukayane I, Choiset Y, Rabesona H, Sitohya M, Popov YG,Kuliev AA, Mossi F, Chobert JM, Haertlé T (2011) Potential use of lactic acid bacteria for reduction of allerginicity and for longer conservation of fermented foods. Trends Food Sci Technol 22:509–516. doi:10.1016/j.tifs.2011.05.003

  • Floriano B, Ruiz Barba JL, Jiménez Diaz R (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel anti Listeria plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocin. Appl Environ Microbiol 64:4883–4890

    PubMed  CAS  Google Scholar 

  • Fortina MG, Ricci G, Borgo F, Manachini PL, Arends K, Schiwon K, Abajy MY, Grohmann E (2008) A survey on biotechnological potential and safety of the novel Enterococcus species of dairy origin, E. italicus. Int J Food Microbiol 123:204–211

    Article  PubMed  CAS  Google Scholar 

  • Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Article  PubMed  Google Scholar 

  • Franz CMAP, Schillinger U, Holzapfel WH (1996) Production and characterization of enterocin 900, a bacteriocin produced by Enterococcus faecium BFE 900 from black olives. Int J Food Microbiol 29:255–270

    Article  PubMed  CAS  Google Scholar 

  • Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH (2003) Enterococci in foods—a conundrum for food safety. Int J Food Microbiol 88:105–122

    Article  PubMed  CAS  Google Scholar 

  • Gallagher E, GormLey TR, Arendt EK (2004) Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci Technol 15:143–152

    Article  CAS  Google Scholar 

  • Garcia de Fernando G (2011) Lactic acid bacteria/ Enterococcus in milk and dairy products. In: Fuquay JW, Fox PF, Roginski H (eds) Encyclopedia of dairy sciences. Academic, New York, pp 153–159

  • Garcia MT, Lucas R, Abriouel H, Ben Omar N, Pérez R, Grande MJ, Martínez Cañamero M, Gálvez A (2004) Antimicrobial activity of enterocin EJ97 against Bacillus macroides/Bacillus maroccanus isolated from Zucchini purée. J Appl Microbiol 97:731–737

    Article  PubMed  CAS  Google Scholar 

  • Gardner NJ, Savard T, Obermeier P, Caldwell G, Champagne CP (2001) Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int J Food Microbiol 64:261–275

    Article  PubMed  CAS  Google Scholar 

  • Giraffa G (2003) Functionality of enterococci in dairy products. Int J Food Microbiol 88:215–222

    Article  PubMed  CAS  Google Scholar 

  • Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Biochemistry and physiology of sourdough lactic acid bacteria. Trends Food Sci Technol 16:57–69

    Article  CAS  Google Scholar 

  • Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2007) Sourdough lactobacilli and celiac disease. Food Microbiol 24:187–196

    Article  PubMed  CAS  Google Scholar 

  • Grande MJ, Lucas R, Abriouel H, Maqueda M, Martinéz Bueno M, Ben Omar N, Martinéz Cañamero M, Valdivia E, Gálvez A (2005) Control of Alicyclobacillus acidoterrestris in fruit juices by enterocin AS-48. Int J Food Microbiol 104:289–297

    Article  PubMed  CAS  Google Scholar 

  • Grande MJ, Lucas R, Abriouel H, Valdivia E, Ben Omar N, Maqueda M, Martinéz Bueno M, Martinéz Cañamero M, Gálvez A (2006a) Inhibition of toxicogenic Bacillus cereus in rice based foods by enterocin AS-48. Int J Food Microbiol 106:185–194

    Article  PubMed  CAS  Google Scholar 

  • Grande MJ, Lucas R, Abriouel H, Valdivia E, Ben Omar N, Maqueda M, Martínez Cañamero M, Gálvez A (2006b) Inhibition of Bacillus licheniformis LMG 19409 from ropy cider by enterocin AS-48. J Appl Microbiol 101:422–428

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara H, Seki T, Ariga T (2004) The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 68:444–447

    Article  PubMed  CAS  Google Scholar 

  • Hamad SH, Dieng MC, Ehrmann MA, Vogel RF (1997) Characterization of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J Appl Microbiol 83:764–770

    Article  PubMed  CAS  Google Scholar 

  • Hui YH, Meunier Goddik LM, Hansen AS, Josephsen J, Nip WK, Stanfield PS, Toldrà F (eds) (2004) Handbook of food and beverage fermentation technology. CRC, Boca Raton

  • Ibarguren C, Raya RR, Apella MC, Audisio MC (2010) Enterococcus faecium isolated from honey synthesized bacteriocin-like substances active against different Listeria monocystogenes strains. J Microbiol 48:44–52

    Article  PubMed  CAS  Google Scholar 

  • Javed A, Masud T, Ul Ain Q, Imran M, Maqsood S (2011) Enterocins of Enterococcus faecium, emerging natural food preservatives. Ann Microbiol. doi:10.1007/s13213-011-0223-8

  • Kacem M, Karam NE (2006) Microbiological study of naturally fermented Algerian green olives: isolation and identification of lactic acid bacteria and yeasts along with the effects of brine solutions obtained at the end of olive fermentation on Lactobacillus plantarum growth. Grasas Aceites 57:292–300

    Google Scholar 

  • Kacem M, Zadi Karam H, Karam N (2004) Isolation of lactic acid bacteria for its possible use in the fermentation of green Algerian olives. Grasas Aceites 55:385–393

    Google Scholar 

  • Khan H, Flint S, Yu PL (2010) Enterocins in food preservation. Int J Food Microbiol 141:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kim TW, Lee JH, Kim SE, Park MH, Chang HC, Kim HY (2009) Analysis of microbial communities in doenjang, a Korean fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int J Food Microbiol 131:265–271

    Article  PubMed  CAS  Google Scholar 

  • Kitahara M, Sakata S, Benno Y (2005) Biodiversity of Lactobacillus sanfranciscencis strains isolated from five sourdoughs. Lett Appl Microbiol 40:353–357

    Article  PubMed  CAS  Google Scholar 

  • Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T (2005) Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food Microbiol 22:497–504

    Article  CAS  Google Scholar 

  • Lavermicocca P, Gobbetti M, Corsetti A, Gaputo L (1998) Characterization of lactic acid bacteria isolated from olive phylloplane and table olives brines. Ital J Food Sci 10:27–39

    CAS  Google Scholar 

  • Lavermicocca P, Valerio F, Lonigro SI, Baruzzi F, Morea M, Gobbetti M (2002) Olive fermentation using LAB isolated from olive phylloplane and olive brines. Acta Hortic 586:621–624, ISHS

    CAS  Google Scholar 

  • Lee CH (1997) Lactic acid fermented foods and their benefits in Asia. Food Control 8:259–269

    Article  Google Scholar 

  • Lee CW, Ko CY, Ha DM (1992) Microbial changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Korean J Microbiol Biotechnol 20:102

    CAS  Google Scholar 

  • Lee SF, Huang WH, Liu YC, Chou HH, Tang CH, Lee FL (1999) Alkaline fermented foods—stinky tofu: screening and identification of fermenting microflora for stinky brine. Food Sci 26:384–394

    Google Scholar 

  • Lee K, Lee M, Lee Y (2008) Safety assessment of commercial Enterococcus probiotics in Korea. J Microbiol Biotechnol 18:942–945

    PubMed  CAS  Google Scholar 

  • Lempiäinen H, Kinnunen K, Mertanen A, Von Wright A (2005) Occurrence of virulence factors among human intestinal enterococcal isolates. Lett Appl Microbiol 41:341–344

    Article  PubMed  Google Scholar 

  • Leroy CR, Foulquié Moreno MR, De Vuyst L (2003) Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation. Int J Food Microbiol 88:235–240

    Article  PubMed  CAS  Google Scholar 

  • Lucas R, Grande MJ, Abriouel H, Maqueda M, Ben Omar N, Valvidia E, Martinéz Cañamero M, Gálvez A (2006) Application of the broad spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food ChemToxicol 44:1774–1781

    Article  CAS  Google Scholar 

  • M’hir S, Mejri M, Hamdi M (2007) Microflora distribution and species ratio of Tunisian fermented doughs for bakery industry. Afr J Biotechnol 6:2122–2129

    Google Scholar 

  • M’hir S, Aldric JM, El Mejdoub T, Destain J, Mejri M, Hamdi M, Thonart P (2008) Proteolytic breakdown of gliadin by Enterococcus faecalis isolated from Tunisian fermented dough. World J Microbiol Biotechnol 24:2775–2781

    Article  CAS  Google Scholar 

  • M’hir S, Rizello CG, Di Cagno R, Cassone A, Hamdi M (2009) Use of selected enterococci and Rhizopus oryzae proteases to hydrolyse wheat proteins responsible for celiac disease. J Appl Microbiol 106:421–431

    Article  PubMed  CAS  Google Scholar 

  • Maldonado A, Ruiz Barba JL, Jiménez Díaz R (2003) Purification and genetic characterization of plantaricin NC8. Appl Environ Microbiol 69:383–389

    Article  PubMed  CAS  Google Scholar 

  • Maldonado A, Ruiz Barba JL, Jiménez Díaz R (2004) Production of plantaricin NC8 by Lactobacillus plantarum NC8 is induced in the presence of different types of Gram-positive bacteria. Arch Microbiol 181:8–16

    Article  PubMed  CAS  Google Scholar 

  • Manolopoulou E, Sarantinopoulos P, Zoidou E, Aktypis A, Moschopoulou E, Kandarakis IG, Anifantakis EM (2003) Evolution of microbial populations during traditional feta cheese manufacture and ripening. Int J Food Microbiol 82:153–161

    Article  PubMed  Google Scholar 

  • Martínez Viedma P, Abriouel H, Ben Omar N, Valdivia E, López RL, Gálvez A (2008) Inactivation of exopolysaccharide and 3-hydroxypropioaldehyde-producing lactic acid bacteria in apple juice and apple cider by enterocin AS-48. Food Chem Toxicol 46:1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Martínez Viedma P, Abriouel H, Ben Omar N, López RL, Valdivia E, Gálvez A (2009) Inactivation of Geobacillus stearothermophilus in canned food and coconut milk samples by addition of enterocin AS-48. Food Microbiol 26:289–293

    Article  CAS  Google Scholar 

  • Martínez Viedma P, Abriouel H, Ben Omar N, López RL, Gálvez A (2010) Effect of enterocin EJ97 against Geobacillus stearothermophilus vegetative cells and endospores in canned foods and beverages. Eur Food Res Technol 230:513–519

    Article  CAS  Google Scholar 

  • Molinos AC, Abriouel H, López RL, Ben Omar N, Valdivia E, Gálvez A (2008a) Inhibition of Bacillus cereus and Bacillus weihenstephanensis in raw vegetables by application of washing solutions containing enterocin AS-48 alone and in combination with other antimicrobials. Food Microbiol 25:762–770

    Article  CAS  Google Scholar 

  • Molinos AC, Abriouel H, López RL, Valdivia E, Ben Omar N, Gálvez A (2008b) Combined physic-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts. Food Chem Toxicol 46:2912–2921

    Article  CAS  Google Scholar 

  • Molinos AC, Abriouel H, López RL, Ben Omar N, Valdivia E, Gálvez A (2009a) Enhanced bactericidal activity of enterocin AS-48 in combination with essentials oils, natural bioactive compounds and chemical preservatives against Listeria monocystogenes. Food Chem Toxicol 47:2216–2223

    Article  CAS  Google Scholar 

  • Molinos AC, López RL, Abriouel H, Ben Omar N, Valdivia E, Gálvez A (2009b) Inhibition of Salmonella enterica cells in deli-type salad by enterocin AS-48 in combination with other antimicrobials. Probiotics Antimicrob Protein 1:85–90

    Article  CAS  Google Scholar 

  • Moreno MRF, Leisner JJ, Tee LK, Ley C, Radv S, Rusul G, Vancanneyt M, De Vuyst L (2002) Microbial analysis of Malaysian Tempeh, and characterization of two bacteriocins produced by isolates of Enterococcus faecium. J Appl Microbiol 92:147–157

    Article  PubMed  CAS  Google Scholar 

  • Muyunja CMBK, Naruhus JA, Treimo J, Langsrudt T (2003) Isolation, characterization and identification of lactic acid baceteria from Bushura: a Ugandan traditional fermented beverage. Int J Food Microbiol 80:201–210

    Article  Google Scholar 

  • Nout MJR (2009) Rich nutrition from the poorest—cereal fermentations in Africa and Asia. Food Microbiol 26:685–692

    Article  PubMed  Google Scholar 

  • Nueno-Palop C, Narbad A (2011) Probiotic assessment of Enterococcus faecalis CP58 isolated from human gut. Int J Food Microbiol 145:390–394

    Article  PubMed  CAS  Google Scholar 

  • Nychas G-JE, Panagou EZ, Parker ML, Waldron KW, Tassou CC (2002) Microbial colonization of naturally black olives during fermentation and associated biochemical activities in the cover brine. Lett Appl Microbiol 34:173–177

    Article  PubMed  Google Scholar 

  • Ogier JC, Serror P (2008) Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126:291–301

    Article  PubMed  CAS  Google Scholar 

  • Okuma S, Katsura M, Hirouchi M (1997) GABA and GABA receptors (in Japanese). Shinkei Seishin-yaku (Neurotransmitter) 19:167–180

    Google Scholar 

  • Omoni AO, Aluko RE (2005) Soybean foods and their benefits: Potential mechanisms of action. Nutr Rev 63:272–283

    Article  PubMed  Google Scholar 

  • Onda T, Yanagida F, Uchimura T, Tsuji M, Ogino S, Shinohara T, Yokotsuka K (2002) Widespread distribution of the bactreiocin-producing lactic acid cocci in miso-paste products. J Appl Microbiol 92:695–705

    Article  PubMed  CAS  Google Scholar 

  • Ouaba LII, Nyanga Koumou CAG, Parkouda C, Sawadogo H, Kobawila SC, Keleke S, Diawara B, Louembe D, Sutherland JP (2010) Genotypic diversity of lactic acid bacteria isolated from Africain traditional alkaline-fermented foods. J Appl Microbiol 108:2019–2029

    Google Scholar 

  • Pepe O, Villani F, Oliviero T, Greco T, Cappola S (2002) Effect of proteolytic starter cultures as leavening agents of pizza dough. Int J Food Microbiol 2637:1–8

    Google Scholar 

  • Pereira AP, Pereira JA, Bento A, Estevinho ML (2008) Microbial characterization of table olives commercialized in Portugal in respect to safety aspects. Food Chem Toxicol 46:2895–2902

    Article  PubMed  CAS  Google Scholar 

  • Pérez Borla O, Davidovich LA, Rourra SI (2010) Isolation and characterization of proteolytic microorganisms from fresh and fermented cabbage. LWT-Food Sci Technol 43:298–301

    Article  CAS  Google Scholar 

  • Pérez Pulido R, Ben Omar N, Abriouel H, López RL, Martínez Cañamero M, Gálvez A (2005a) Microbiological study of lactic acid fermentation of caper berries by molecular and culture-dependent methods. Appl Environ Microbiol 71:7872–7879

    Article  PubMed  CAS  Google Scholar 

  • Pérez Pulido R, Ben Omar N, Abriouel H, Lucas R, Martínez Canãmero M, Gálvez A (2005b) Microbiological study of lactic acid fermentation of caper berries by molecular and culture-dependant methods. Appl Environ Microbiol 71:7872–7879

    Article  PubMed  CAS  Google Scholar 

  • Péréz Pulido R, Abriouel H, Ben Omar N, Lucas R, Martínez Canãmero M, Gálvez A (2006) Safety and potential risks of enterococci isolated from traditional fermented capers. Food Chem Toxicol 44:2070–2077

    Article  PubMed  CAS  Google Scholar 

  • Randazzo CL, Restuccia C, Romano AD, Caggia C (2004) Lactobacillus casei, dominant species in naturally fermented Sicilian green olives. Int J Food Microbiol 90:9–14

    Article  PubMed  Google Scholar 

  • Randazzo CL, Rajendram R, Caggia C (2010) Lactic acid bacteria in table olive fermentation. In: Preedy VR, Watson RR (eds) Olives and olive oil in health and disease prevention. Academic, London, pp 369–376

  • Riboldi GP, Frazzon J, D’Azevedo PA, Frazzon APG (2009) Antimicrobial resistance profile of Enterococcus spp. Isolated from food in southern Brazil. Braz J Microbiol 40:125–128

    Article  Google Scholar 

  • Rob Nout MJ (2009) Rich nutrition from the poorest-cereal fermentations in Africa and Asia. Food Microbiol 26:685–692

    Article  Google Scholar 

  • Robert H, Gabriel V, Fontagné Faucher C (2009) Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific PCR. Int J Food Microbiol 135:53–59

    Article  PubMed  CAS  Google Scholar 

  • Rocha JM, Malcata FX (1999) On the microbiological profile of traditional Portuguese sourdough. J Food Protect 62:1416–1429

    CAS  Google Scholar 

  • Rodgers S (2008) Novel applications of live bacteria in food services: probiotics and protective cultures. Trends Food Sci Technol 19:188–197

    Article  CAS  Google Scholar 

  • Rodríguez H, Curiel JA, Landete JM, Rivas B, Felipe FL, Gómez Cordovés C, Mancheño JM, Muñoz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79–90

    Article  PubMed  CAS  Google Scholar 

  • Rossi EA, Vendramini RC, Carlos IZ, Ueiji IS, Squinzari M, Silva SI, Valdez GF (2000) Effects of a novel fermented soy product on the serum lipids of hypercholesterolemic rabbits. Arq Bras Cardiol 74:213–216

    Article  Google Scholar 

  • Rossi EA, Vendramini CR, Carlos IZ, Oliveira MG, Valdez GF (2003) Efeito de um novo produto fermentado de soja sobre lípides séricos de homens adultos normocolesterolêmicos. Arch Latinoam Nutr 53:47–51

    PubMed  CAS  Google Scholar 

  • Rossi EA, Rosier I, Dâmaso AR, Carlos IZ, Vendramini RC, Abdalla DSP, Talarico VH, Minto DF (2004) Determinação de isoflavonas nas diversas etapes do processamento do “iogurte” de soja. Alim Nutr 15:93–99

    CAS  Google Scholar 

  • Rossi EA, Cavallini DCU, Carlos IZ, Vendramini RC, Damaso AR, Valdez G (2008) Intake of isofl avone-supplemented soy yogurt fermented with Enterococcus faecium lowers serum total cholesterol and non-HDL cholesterol of hypercholesterolemic rats. Eur Food Res Technol 228:275–282

    Article  CAS  Google Scholar 

  • Rubia Soria A, Abriouel H, Lucas R, Ben Omar N, Martínez Cañamero M, Gálvez A (2006) Production of antimicrobial substances by lactic acid bacteria isolated from fermented table olives. World J Microbiol Biotechnol 22:765–768

    Article  CAS  Google Scholar 

  • Ruiz Barba JL, Caballero Guerrero B, Maldonaldo Barragán A, Jiménez Díaz R (2010) Coculture with specific bacteria enhances survival of Lactobacillus plantarum NC 8, an autoinducer-regulated bacteriocin producer, in olive fermentation. Food Microbiol 27:413–417

    Article  PubMed  CAS  Google Scholar 

  • Sabia C, de Niederhausern S, Guerrieri E, Messi P, Anacarso I, Manicardi G, Bondi M (2008) Detection of bacteriocin production and virulence traits in vancomycin-resistant enterococci of different sources. J Appl Microbiol 4:970–979

    Google Scholar 

  • Sajur SA, Saguir FM, Manca De Nadra MC (2007) Effect of dominant specie of Lactic acid bacteria from tomato on natural microflora development in tomato purée. Food Control 18:594–600

    Article  Google Scholar 

  • Sengen IY, Nielsen DS, Karapinar M, Jakobsen M (2009) Identification of Lactic acid bacteria isolated from Tarhana, a traditional Turkish fermented food. Int J Food Microbiol 135:05–111

    Google Scholar 

  • Senok AC (2009) Probiotics in the Arabian Gulf region. Food Nutr Res 53. doi:10.3402/fnr.v53i0.1842

  • Settanni L, Corsetti A (2008) Applications of bacteriocins in vegetable food preservation. Int J Food Microbiol 121:123–138

    Article  CAS  Google Scholar 

  • Settanni L, Corsetti A (2007) The use of multiplex PCR to detect and differenciate food- and beverage-associated microorganisms: a review. J Microbiol Methods 69:1–22

    Article  PubMed  CAS  Google Scholar 

  • Shin DH, Kim MS, Han JS, Lim DK, Bak WS (1996) Changes of chemical composition and microflora in commercial kimchi. Korean J Food Sci Technol 28:137–145

    Google Scholar 

  • Sukontasing S, Tanasupawat S, Moonmangmee S, Lee JS, Suzuki K (2007) Enterococcus camelliae sp. nov., isolated from fermented tea leaves in Thailand. Int J Syst Evol Microbiol 57:2151–2154

    Article  PubMed  CAS  Google Scholar 

  • Sulma IM, Steenson LR, Kirleis AW (1991) Isolation and characterization of micro-organisms associated with the traditional sorghum fermentation for production of Sudanese kisra. Appl Environ Microbiol 57:2529–2533

    Google Scholar 

  • Surono IS, Koestomoc FP, Novitasari N, Zakaria FR, Koesnandar Y (2011) Novel probiotic Enterococcus faecium IS-27526 supplementation increased total salivary sIgA level and bodyweight of pre-school children: a pilot study. Anaerobe. doi:10.1016/j.anaerobe.2011.06.003

  • Tamura T, Noda M, Ozaki M, Maruyama M, Matoba Y, Kumagai T, Sugiyama M (2010) Establishment of an efficient fermentation system of gamma- aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves. Biol Pharm Bull 33(10):1673–1679

    Article  PubMed  CAS  Google Scholar 

  • Todorov SD (2010) Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria. Food Control 21:1011–1021

    Article  CAS  Google Scholar 

  • Todorov SD, Von Mollendorff JW, Moelich E, Muller N, Witthuhn RC, Dicks LMT (2009) Evaluation of potential probiotic properties of Enterococcus mundtii, its survival in Boza and in situ bacteriocin production. Food Technol Biotechnol 47:178–191

    CAS  Google Scholar 

  • Van Der Meulen R, Scheirlinck I, Van Schoor A, Huys G, Vancanneyt M, Vandamme P, De Vuyst L (2007) Population dynamics and metabolite target analysis during laboratory fermentations of wheat and spelt sourdoughs. Appl Environ Microbiol 73:4741–4750

    Article  PubMed  CAS  Google Scholar 

  • Vemulapalli S, Barletta M (1984) The role of the sympathetic nervous system in the cardiovascular effects of systemically administered gamma-aminobutyric acid. Arch Int Pharmacodyn 267:46–58

    PubMed  CAS  Google Scholar 

  • Vijayendra SVN, Rajashree K, Halami PM (2010) Characterizatoion of a heat stable anti-listerial bacteriociin produced by vancomycin sensitive Enterococcus faecium isolated from idli batter. Indian J Microbiol 50:243–246

    Article  CAS  Google Scholar 

  • Wieser H, Vermeulen N, Gaertner F, Vogel RF (2008) Effects of different Lactobacillus and Enterococcus strains and chemical acidification regarding degradation of gluten proteins during sourdough fermentation. Eur Food Res Technol 226:1495–1502

    Article  CAS  Google Scholar 

  • Yerlikaya O, Akbulut N (2011) Some new approaches on biochemical and biotechnological properties of Enterococcus genus: a review. Curr Opin Biotechnol 22S:S15–S152

    Google Scholar 

  • Yoon MY, Kim YJ, Hwang HJ (2008) Properties and safety aspects of Enterococcus faecium strains isolated from chungkukjang, a fermented soy product. LWT-Food Sci Technol 24:925–933

    Article  CAS  Google Scholar 

  • Yousif NMK, Dawyndt P, Abriouel H, Wijaya A, Shillinger U, Vancanneyt M, Swings J, Dirar HA, Holzapfel WH, Franz CMAP (2005) Molecular characterization, technological properties and safety aspects of enterococci from Husuwa, an Africain fermented sorghum product. J Appl Microbiol 98:216–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

S.M’h. would to thank Bari Laboratory for helpful discussions and assistance in preparing the manuscript. I would like also to thank Asma Mejri for her help. We also thank the anonymous reviewers for valuable comments on an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sana M’hir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

M’hir, S., Minervini, F., Di Cagno, R. et al. Technological, functional and safety aspects of enterococci in fermented vegetable products: a mini-review. Ann Microbiol 62, 469–481 (2012). https://doi.org/10.1007/s13213-011-0363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0363-x

Keywords

Navigation