Log in

Clay swelling mechanism in tuff stones: an example of the Hilbersdorf Tuff from Chemnitz, Germany

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Hydric expansion is considered an important factor for the weathering behavior and deterioration of tuffs, which are utilized as building stones and typically associated with the presence of swellable clay minerals. Two types of swelling mechanisms are discussed when swellable clay minerals are present: stepwise intracrystalline swelling and continuous osmotic swelling. A mechanism that can cause expansion in the absence of swellable clay minerals, which is characterized by interaction of surface forces, is the disjoining pressure. The identification of the primary mode of swelling is important for understanding and finally preventing the swelling damage in tuff stones. The hydric expansion of the Hilbersdorf Tuff can exceed the values of typical volcanoclastic materials by multiples, but partly shows the absence of swellable clay minerals. In this study, extensive mineralogical and petrophysical investigations on five varieties of the Hilbersdorf Tuff were performed. Swelling experiments demonstrated that intracrystalline swelling plays a major role when swellable clay minerals are present. Furthermore, the importance of the structure and location of the clay minerals in the rock fabric is highlighted. The investigation suggests that the disjoining pressure plays an important role for the hydric expansion of two varieties, which are free of swellable clay minerals but show high microporosity and pores smaller than 2 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Boek ES, Coveney PV, Skipper NT (1995) Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor. J Am Chem Soc 117(50):12608–12617

    Article  Google Scholar 

  • Chang FRC, Skipper NT, Sposito G (1998) Monte Carlo and molecular dynamics simulations of electrical double-layer structure in potassium–montmorillonite hydrates. Langmuir 14(5):1201–1207

    Article  Google Scholar 

  • De la Calle C, Suquet H (1988) Vermiculite. Rev Miner Geochem 19(1):455–496

    Google Scholar 

  • Derjaguin BV, Obukov EV (1936) Anomalien dünner Flüssigkeitsschichten III Acta Physicochim. URSS 5(1):1–22

    Google Scholar 

  • Dixon JB, Weed SB (1989) Minerals in soil environments. Soil Science Society of America Inc., Fitchburg

    Google Scholar 

  • Eulenberger S, Tunger B, Fischer F (1995) Neue Erkenntnisse zur Geologie des Zeisigwaldes bei Chemnitz. Veröffentlichungen Museum für Naturkunde Chemnitz 18:25–34

    Google Scholar 

  • Fischer F (1990) Lithologie und Genese des Zeisigwald-Tuffs (Rotliegendes, Vorerzgebirgs-Senke). Veröffentlichungen des Museums für Naturkunde Chemnitz 14:61–74

    Google Scholar 

  • Hirschwald J (1908) Die Prüfung der natürlichen Bausteine auf ihre Wetterbeständigkeit. W. Ernst & Sohn, Berlin

    Google Scholar 

  • Hirschwald J (1912) Die Prüfung der natürlichen Bausteine auf ihre Wetterbeständigkeit. W. Ernst & Sohn, Berlin

    Google Scholar 

  • Jentsch F (2012) Steine in der Stadt Chemnitz. Chemnitz Roland 19(56):19–23

    Google Scholar 

  • Jimenez Gonzalez I, Scherer GW (2004) Effect of swelling inhibitors on the swelling and stress relaxation of clay bearing stones. Environ Geol 46(3–4):364–377

    Google Scholar 

  • Klopfer H (1985) Feuchte. In: Heinz Klopfer (Hg.): Lehrbuch der Bauphysik

  • Kocher M (2005) Quelldruckmessungen und thermische Druckmessungen an ausgewählten Sandsteinen. Dissertation, University of Munich

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Pet 27(3):745–750

    Article  Google Scholar 

  • López-Doncel R, Wedekind W, Leiser T, Molina-Maldonado S, Velasco-Sánchez A, Dohrmann R et al (2016) Salt bursting tests on volcanic tuff rocks from Mexico. Environ Earth Sci 75(3):212

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1989) X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford

    Google Scholar 

  • Morales Demarco M, Jahns E, Ruedrich J, Oyhantcabal P, Siegesmund S (2007) The impact of partial water saturation on rock strength: an experimental study on sandstone. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 158(4):869–882

    Article  Google Scholar 

  • Reichenbach HG, Beyer J (1995) Dehydration and rehydration of vermiculites. II: phlogopitic CA-vermiculite. Clay Miner 30(4):273–286

    Article  Google Scholar 

  • Rößler R, Annacker V, Kretzschmar R, Eulenberger S, Tunger B (2008) Auf Schatzsuche in Chemnitz-Wissenschaftliche Grabungen’08. Veröffentlichungen des Museums für Naturkunde Chemnitz 31:5–44

    Google Scholar 

  • Rößler R, Kretzschmar R, Annacker V, Mehlhorn S, Merbitz M, Schneider JW, Luthardt L (2009) Auf Schatzsuche in Chemnitz-Wissenschaftliche Grabungen’09. Veröffentlichungen des Museums für Naturkunde Chemnitz 32:25–46

    Google Scholar 

  • Ruedrich J, Bartelsen T, Dohrmann R, Siegesmund S (2011) Moisture expansion as a deterioration factor for sandstone used in buildings. Environ Earth Sci 63(7–8):1545–1564

    Article  Google Scholar 

  • Schneider JW, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In: Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken: Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 61, pp 530–588

  • Schuh H (1987) Physikalische Eigenschaften von Sandsteinen und ihren verwitterten Oberflächen. München: F. Pfeil (Münchner geowissenschaftliche Abhandlungen. Reihe B, Allgemeine und angewandte Geologie, 6)

  • Schult A, Shi G (1997) Hydration swelling of crystalline rocks. Geophys J Int 131(1):179–186

    Article  Google Scholar 

  • Siedel H (1995) Materialien der Kanzel und des Fundaments. In: Arndt Kiesewetter, Heiner Siedel und Michael Stuhr (Hg.): Die Tulpenkanzel im Dom zu Freiberg, Bd. 2. München: Lipp (Arbeitsheft/Landesamt für Denkmalpflege Sachsen, 2), pp 68–74

  • Siedel H (2006) Sächsische „Porphyrtuffe“ aus dem Rotliegend als Baugesteine: Vorkommen und Abbau, Anwendung, Eigenschaften und Verwitterung. IFS-Bericht (22):47–57

  • Siedel H (2010) Historic building stones and flooding: changes of physical properties due to water saturation. J Perform Constr Facil 24(5):452–461

    Article  Google Scholar 

  • Siegesmund S, Dürrast H (2011) Physical and mechanical properties of rocks. In: Siegfried Siegesmund und Rolf Snethlage (Hg.): Stone in architecture: Springer (10), pp 97–225

  • Snethlage R, Wendler E, Klemm DD (1995) Tenside im Gesteinsschutz-bisherige Resultate mit einem neuen Konzept zur Erhaltung von Denkmälern aus Naturstein. Denkmalpflege und Naturwissenschaft-Natursteinkonservierung I. Verlag Ernst & Sohn, Berlin, pp 127–146

    Google Scholar 

  • Ufer K, Kleeberg R, Bergmann J, Dohrmann R (2012a) Rietveld refinement of disordered illite-smectite mixed-layer structures by a recursive algorithm. I: one-dimensional patterns. Clays Clay Miner 60(5):507–534

    Article  Google Scholar 

  • Ufer K, Kleeberg R, Bergmann J, Dohrmann R (2012b) Rietveld refinement of disordered illite-smectite mixed-layer structures by a recursive algorithm. II: powder-pattern refinement and quantitative phase analysis. Clays Clay Miner 60(5):535–552

    Article  Google Scholar 

  • Wangler T, Scherer GW (2008) Clay swelling mechanism in clay-bearing sandstones. Environ Geol 56(3–4):529–534

    Article  Google Scholar 

  • Wedekind W, López-Doncel R, Dohrmann R, Kocher M, Siegesmund S (2013) Weathering of volcanic tuff rocks caused by moisture expansion. Environ Earth Sci 69(4):1203–1224

    Article  Google Scholar 

  • Weimann MB (2001) Hygrische Eigenschaften von Polymerbeton im Vergleich mit porösen mineralischen Werkstoffen des Bauwesens. Dissertation, ETH Zurich

  • Weiss T, Siegesmund S, Kirchner D, Sippel J (2004) Insolation weathering and hygric dilatation: two competitive factors in stone degradation. Environ Geol 46(3–4):402–413

    Google Scholar 

Download references

Acknowledgements

We are grateful to T. Wangler, T. Licha, W. Wedekind and R. Kleeberg for their help and useful scientific discussion as well as C. Gross for the linguistic corrections. We thank K. Ufer, B. Schulz and S. Haser for the help with the mineral analyses and T. Neubert for providing material from his private collection. Special thanks go to F. Jentsch for his engagement and useful scientific discussion. This work was supported by the Deutsche Bundesstiftung Umwelt (AZ20017/481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Pötzl.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability”, guest edited by Siegfried Siegesmund, Luís Sousa, and Rubén Alfonso López-Doncel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pötzl, C., Dohrmann, R. & Siegesmund, S. Clay swelling mechanism in tuff stones: an example of the Hilbersdorf Tuff from Chemnitz, Germany. Environ Earth Sci 77, 188 (2018). https://doi.org/10.1007/s12665-018-7345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7345-2

Keywords

Navigation