Log in

Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Antibiotic resistance is a problem that has been increasing lately; therefore, it is important to find new alternatives to treat infections induced by pathogens that cannot be eliminated with available products. Small antimicrobial peptides (AMPs) known as bacteriocin could be an alternative to antibiotics because they have shown to be effective against a great number of multidrug-resistant microbes. In addition to its high specificity against microbial pathogens and its low cytotoxicity against human cells, most bacteriocin present tolerance to enzyme degradation and stability to temperature and pH alterations. Bacteriocins are small peptides with a great diversity of structures and functions; however, their mechanisms of action are still not well understood. In this review, bacteriocin produced by Bacillus species will be described, especially its mechanisms of action, culture conditions used to improve its production and state-of-the-art methodologies applied to identify them. Bacteriocin utilization as food preservatives and as new molecules to treat cancer also will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tan SY, Tatsumura Y (2015) Alexander fleming (1881–1955): discoverer of penicillin. Singapore Med J 56:366–367. https://doi.org/10.11622/smedj.2015105

  2. Wright PM, Seiple IB, Myers AG (2014) The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl 53(34):8840–8869. https://doi.org/10.1002/anie.201310843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. World Health Organization (2019) New report calls for urgent action to avert antimicrobial resistance crisis. https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis. Accessed 24 July 2021

  4. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Oullette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N, Who Pathogens Priority List Working Group (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18(3):318–327. https://doi.org/10.1016/s1473-3099(17)30753-3

    Article  Google Scholar 

  5. Santajit S, Indrawattana N (2016) Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int 2016:1–9. https://doi.org/10.1155/2016/2475067

    Article  CAS  Google Scholar 

  6. Vivekanandhan G, Savithamani K, Hatha AMM, Lakshmanaperumalsamy P (2002) Antibiotic resistance of Aeromonas hydrophila isolated from marketed fish and prawn of South India. Int J Food Microbiol 76(1–2):165–168. https://doi.org/10.1016/S0168-1605(02)00009-0

    Article  CAS  PubMed  Google Scholar 

  7. Kang CH, Kim YG, Oh SJ, Mok JS, Cho MH, So JS (2014) Antibiotic resistance of Vibrio harveyi isolate from seawater in Korea. Mar Pollut Bull 86(1–2):261–265. https://doi.org/10.1016/j.marpolbul.2014.07.008

  8. Loo KY, Letchumanan V, Law JWF, Pusparajah P, GohBH MNSA, He YW, Lee LH (2020) Incidence of antibiotic resistance in Vibrio spp. Rev Aquac 12(4):2590–2608. https://doi.org/10.1111/raq.12460

    Article  Google Scholar 

  9. Reboucas RH, Viana de Sousa O, Lima AS, Vasconcelos FR, de Carvalho PB, dos Fernandes Vieira RHS (2011) Antimicrobial resistance profile of Vibrio species isolated from marine shrimp farming environments (Litopenaeus vannamei) at Ceará. Brazil Environ Res 111(1):21–24. https://doi.org/10.1016/j.envres.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  10. Simons A, Alhanout K, Duval RE (2020) Bacteriocins, antimicrobial peptides from bacteria origin: overview of their biology and their implementation against multidrug-resistant bacteria. Microorganisms 8(5):639. https://doi.org/10.3390/microorganisms8050639

    Article  CAS  PubMed Central  Google Scholar 

  11. Chauhan AK, Maheshwari DK, Bajpai VK (2017) Isolation and preliminary characterization of a bacteriocin-producer Bacillus strain inhibiting methicillin resistant Staphylococcus aureus. Acta Biol Hung 68(2):208–219. https://doi.org/10.1556/018.68.2017.2.8

    Article  CAS  PubMed  Google Scholar 

  12. Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh Å (2004) Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother 54(3):648–653. https://doi.org/10.1093/jac/dkh387

    Article  CAS  PubMed  Google Scholar 

  13. Ng ZJ, Zarin MA, Lee CK, Tan JS (2020) Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: a review. RSC Adv 10(64):38937–38964. https://doi.org/10.1039/D0RA06161A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. **n B, Xu H, Liu H, Liu S, Wang J, Xue J, Zhang F, Deng S, Zeng H, Zeng X, Xu D, Zhao Y, Li F, Wang G (2021) Identification and characterization of a novel circular bacteriocin, bacicyclicin XIN-1, from Bacillus sp. **n1. Food Control 121(10):107696. https://doi.org/10.1016/j.foodcont.2020.107696

  15. Saidumohamed BE, Baburaj AP, Johny TK, Sheela UB, Sreeranganathan M, Bhat SG (2021) A magainin-2 like bacteriocin BpSl14 with anticancer action from gut Bacillus safensis SDG14. Anal Biochem 627(15):1–9. https://doi.org/10.1016/j.ab.2021.114261

    Article  CAS  Google Scholar 

  16. Sharma G, Dang S, Gupta S, Gabrani R (2018) Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101. Med Princ PRact 27(2):186–192. https://doi.org/10.1159/000487306

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gautam N, Sharma N (2009) Bacteriocin: safest approach to preserve food products. Indian J Microbiol 49(2009):204–211. https://doi.org/10.1007/s12088-009-0048-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson EM, Jung YG, ** YY, Jayabalan R, Yang SW, Suh JW (2017) Bacteriocins as food preservatives: challenges and emerging horizons. Crit Rev Food Sci Nutr 58(16):2743–2767. https://doi.org/10.1080/10408398.2017.1340870

    Article  CAS  PubMed  Google Scholar 

  19. Abriouel H, Franz CMAP, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35(1):201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.x

    Article  CAS  PubMed  Google Scholar 

  20. McAuliffe O, Ross RP, Hill C (2001) Lantibiotics: structure, biosynthesis, and mode of action. FEMS Microbiol Rev 25(3):285–308. https://doi.org/10.1111/j.1574-6976.2001.tb00579.x

    Article  CAS  PubMed  Google Scholar 

  21. Barcosa J, Caetano T, Mendo S (2015) Class I and Class II lanthipeptides produced by Bacillus spp. J Nat Prod 78(11):2850–2866. https://doi.org/10.1021/np500424y

    Article  CAS  Google Scholar 

  22. Bauer R, Dicks LMT (2005) Mode of action of lipid II-targeting lantibiotics. Int J Food Microbiol 101(2):201–216. https://doi.org/10.1016/j.ijfoodmicro.2004.11.007

  23. Dickman R, Mitchell SA, Figueiredo AM, Hansen DF, Tabor AB (2019) Molecular recognition of lipid II by lantibiotics: synthesis and conformational studies of analogues of nisin and mutacin rings A and B. J Org Chem 84(18):11493–11512. https://doi.org/10.1021/acs.joc.9b01253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parisot J, Carey S, Breukink E, Chan WC, Narbad A, Bonev B (2008) Molecular mechanism of target recognition by subtilin, a class I lanthionine antibiotic. Antimicrob Agents Chemother 52(2):612–618. https://doi.org/10.1128/AAC.00836-07

    Article  CAS  PubMed  Google Scholar 

  25. Stein T, Borchert S, Conrad B, Feesche J, Hofemeisterm B, Hofemeister J, Entian KD (2002) Two-different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol 184(6):1703–1711. https://doi.org/10.1128/JB.184.6.1703-1711.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chatterjee S, Chatterjee S, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN (1992) Mersacidin, a new antibiotic from Bacillus fermentation, isolation, purification, and chemical characterization. J Antibiot 45(6):832–838. https://doi.org/10.7164/antibiotics.45.832

    Article  CAS  Google Scholar 

  27. Arias AA, Ongena M, Devreese B, Terrak M, Joris B, Fickers P (2013) Characterization of amylolysin, a novel lantibiotic from Bacillus amyloliquefaciens GA1. PLoS ONE 8(12):e83037. https://doi.org/10.1371/journal.pone.0083037

    Article  CAS  Google Scholar 

  28. Paik SH, Chakicherla A, Hasen JN (1998) Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublacin 168, a novel lantibiotic produced by Bacillus subtilis 168. J Biol Chem 273(36):23134–23142. https://doi.org/10.1074/jbc.273.36.23134

    Article  CAS  PubMed  Google Scholar 

  29. Brötz H, Bierbaum G, Reynolds PE, Salh HG (1997) The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem 246(1):193–199. https://doi.org/10.1111/j.1432-1033.1997.t01-1-00193.x

    Article  PubMed  Google Scholar 

  30. Wu C, Biswas S, Garcia de Gonzalo CV, van der Donk WA (2019) Investigation into the mechanism of sublacin. ASC Infect Dis 5(3):454–459. https://doi.org/10.1021/acsinfecdis.8b00320

    Article  CAS  Google Scholar 

  31. Oman TJ, van der Donk WA (2009) Insight into the mode of action of the two-peptide lantibiotic haloduracin. ASC Chem Biol 4(10):865–874. https://doi.org/10.1021/cb900194x

  32. Dischinger J, Josten M, Szekat C, Sahl HG, Bierbaum G (2009) Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM13. PLoS ONE 4(8):e6788. https://doi.org/10.1371/journal.pone.0006788

  33. Mathur H, Rea MC, Cotter PD, Ross RP (2015) The sactbiotic subclass of bacteriocins: an update. Curr Protein Pept Sci 16(6):549–558. https://doi.org/10.2174/1389203716666150515124831

    Article  CAS  PubMed  Google Scholar 

  34. Thennarasu S, Lee DK, Poon A, Kawulka KE, Vederas JC, Ramamoorthy A (2005) Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem Phys Lipids 137(2005):38–51. https://doi.org/10.1016/j.chemphyslip.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  35. Mathur H, Fallico V, O´Connor PM, Rea MC, Cotter PD, Hill C, Ross RP (2017) Insights into the mode of action of the sactibiotic thurincin CD. Fron Microbiol 8:696. https://doi.org/10.3389/fmicb.2017.00696

    Article  Google Scholar 

  36. Nes IF, Brede DA, Diep DB (2013) Chapter 16 – class II non-lantibiotic bacteriocins. In: Kastin A (ed) Handbook of biologically active peptides, 2nd ed. Academic Press, San Diego, USA, pp 85–92. https://doi.org/10.1016/B978-0-12-385095-9.00016-6

  37. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocin. Microbiol Mol Biol Rev 70(2):564–582. https://doi.org/10.1128/MMBR.00016-05

  38. Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF (2007) Common mechanism of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A 104(7):2384–2389. https://doi.org/10.1073/pnas.0608775104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colombo NSR, Chalón MC, Navarro SA, Bellomio A (2018) Pediocin-like bacteriocins: a new perspective on mechanism of action and immunity. Curr Genet 64(2):345–351. https://doi.org/10.1007/s00294-017-0757-9

    Article  CAS  Google Scholar 

  40. Sebei S, Zendo T, Boudabous A, Nakayama J, Sonomoto K (2007) Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1. J Appl Microbiol 103(5):1621–1631. https://doi.org/10.1111/j.1365-2672.2007.03395.x

    Article  CAS  PubMed  Google Scholar 

  41. Wang G, Feng G, Snyder AB, Manns DC, Churey JJ, Worobo RW (2014) Bactericidal thurincin H causes unique morphological changes in Bacillus cereus F4552 without affecting membrane permeability. FEMS Microbiol Lett 357(1):69–76. https://doi.org/10.1111/1574-6968.12486

  42. Chehimi S, Sable S, Hajlaoui MR, Limam F (2010) Mode of action of thuricin S, a new class IId bacteriocin from Bacillus thuringiensis. Can J Microbiol 56(2):162–167

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y, Wang J, Li G, Yang Y, Ding W (2021) Current advancements in sactipeptide natural products. Front Chem 9:595991. https://doi.org/10.3389/fchem.2021.595991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oscáriz JC, Pisabarro AG (2000) Characterization and mechanism of action of cerein 7, a bacteriocin produced by Bacillus cereus Bc7. J Appl Microbiol 89(2):361–369. https://doi.org/10.1046/j.1365-2672.2000.01123.x

  45. Oscáriz JC, Cintas L, Holo H, Lasa Í, Nes IF, Pisabarro AG (2006) Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus BC7. FEMS Microbiol Lett 254(1):108–115. https://doi.org/10.1111/j.1574-6968.2005.00009.x

  46. Kiss A, Balikó G, Csorba A, Chuluunbaatar T, Medzihradszky KF, Alföldi L (2008) Cloning and Characterization of the DNA region responsible for megacin A-216 production in Bacillus megaterium 216. J Bacteriol 190(19):6448–6457. https://doi.org/10.1128/JB.00557-08

  47. Von Tersch MA, Carlton BC (1983) Bacteriocin from Bacillus megaterium ATCC 19213: comparative studies with megacin A-216. J Bacteriol 155(2):866–871. https://doi.org/10.1128/jb.155.2.866-871.1983

    Article  Google Scholar 

  48. Khochamit N, Siripornadulsil S, Sukon P, Siripornadulsil W (2015) Antibacterial activity and genotypic-phenotypic characteristics of bacteriocin producing Bacillus subtilis KKU213: potential as a probiotic strain. Microbiol Res 170:36–50. https://doi.org/10.1016/j.micres.2014.09.004

    Article  CAS  PubMed  Google Scholar 

  49. Liu X, Lee JY, Jeong SJ, Cho KM, Kim GM, Shin JH, Kim JS, Kim JH (2015) Properties of a bacteriocin produced by Bacillus subtilis EMD4 isolated from ganjang (soy sauce). J Microbiol Biotechnol 25(9):1493–1501. https://doi.org/10.4014/jmb.1502.02037

    Article  CAS  PubMed  Google Scholar 

  50. **ang YZ, Li XY, Zheng HL, Chen JY, Lin LB, Zhang QL (2021) Purification and antibacterial properties of a novel bacteriocin against Escherichia coli from Bacillus subtilis isolated from blueberry ferments. LWT 146:111456. https://doi.org/10.1016/j.lwt.2021.111456

    Article  CAS  Google Scholar 

  51. Teo AYL, Tan HM (2005) Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Appl Environ Microbiol 71(8):4185–4190. https://doi.org/10.1128/aem.71.8.4185-4190.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qin Y, Wang Y, He Y, Zhang Y, She Q, Chai Y, Li P, Shang Q (2019) Characterization of Subtilin L-Q11, a Novel Class I Bacteriocin Synthesized by Bacillus subtilis L-Q11 Isolated from orchard soil. Front Microbiol 10:484. https://doi.org/10.3389/fmicb.2019.00484

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kaboré D, Thorsen L, Nielsen DS, Berner TS, Sawadogo-Lingani H, Diawara B, Dicko MH, Jakobsen M (2012) Bacteriocin formation by dominant aerobic spore formers isolated from traditional maari. Int J F Microbiol 154(2012):10–18. https://doi.org/10.1016/j.ijfoodmicro.2011.12.003

    Article  CAS  Google Scholar 

  54. Wu S, Jia S, Sun D, Chen M, Chen X, Zhong J, Huan L (2005) Purification and Characterization of two novel antimicrobial peptides subpeptin JM4-A and subpeptin JM4-B produced by Bacillus subtilis JM4. Curr Microbiol 51(5):292–296. https://doi.org/10.1007/s00284-005-0004-3

    Article  CAS  PubMed  Google Scholar 

  55. Junfeng L, Hongfang L, Yuanyuan Z, **aohui D, Jie L (2014) Characterization of a bacteriocin-like substance produced from a novel isolated strain of Bacillus subtilis SLYY-3. J Ocean Univ China 13:995–999. https://doi.org/10.1007/s11802-014-2547-z

    Article  CAS  Google Scholar 

  56. Hammami I, Jaouadi B, Bacha AB, Rebai A, Bejar S, Nesme X, Rhouma A (2012) Bacillus subtilis bacteriocin Bac 14B with broad inhibitory spectrum: purification, amino acid sequence analysis, and physicochemical characterization. Biotechnol Bioprocess Eng 17:41–49. https://doi.org/10.1007/s12257-010-0401-8

    Article  CAS  Google Scholar 

  57. Lim JH, Kim SD (2009) Selection and characterization of the bacteriocin-producing bacterium, Bacillus subtilis BP6 isolated from chicken gut against Salmonella gallinarum causing fowl-typhus. J appl Biol Chem 52:80–87. https://doi.org/10.3839/jksabc.2009.014

    Article  CAS  Google Scholar 

  58. Banerjee G, Nandi A, Ray AK (2017) Assessment of the hemolytic activity, enzyme production and bacteriocin characterization of Bacillus subtilis LR1 isolated form gastrointestinal tract of fish. Arch Microbiol 199(1):115–124. https://doi.org/10.1007/s00203-016-1283-8

    Article  CAS  PubMed  Google Scholar 

  59. Kindoli S, Lee HA, Heo K, Kim JH (2012) Properties of a Bacteriocin from Bacillus subtilis H27 isolated from Cheonggukjang. Food Sci Biotechnol 21:1745–1751. https://doi.org/10.1007/s10068-012-0232-9

    Article  CAS  Google Scholar 

  60. Wei Z, Sha C, Zhang L, Ge D, Wang Y, **a X, Liu X, Zhou J (2021) A novel subtilin-like lantibiotics subtilin JS-4 produced by Bacillus subtilis JS-4, and its antibacterial mechanism against Listeria monocytogenes. LWT 142:110993. https://doi.org/10.1016/j.lwt.2021.110993

    Article  CAS  Google Scholar 

  61. Lim KB, Balolong MP, Kim SH, Oh JK, Lee JY, Kang DK (2016) Isolation and characterization of a broad spectrum bacteriocin from Bacillus amyloliquefaciens RX7. BioMed Res Int 2016:8521476. https://doi.org/10.1155/2016/8521476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. An J, Zhu W, Liu Y, Zhang X, Sun L, Hong P, Wang Y, Xu C, Xu D, Liu H (2015) Purification and characterization of a novel bacteriocin CAMT2 produced by Bacillus amyloliquefaciens isolated from marine fish Epinephelus areolatus. Food Control 51:278–282. https://doi.org/10.1016/j.foodcont.2014.11.038

    Article  CAS  Google Scholar 

  63. Lim JH, Jeong HY, Kim SD (2011) Characterization of the Bacteriocin J4 Produced by Bacillus amyloliquefaciens J4 isolated from Korean traditional fermented soybean paste. J Korean Soc Appl Biol Chem 54:468–474. https://doi.org/10.3839/jksabc.2011.072

    Article  CAS  Google Scholar 

  64. He L, Chen W, Liu Y (2006) Production and partial characterization of bacteriocin-like peptides by Bacillus licheniformis ZJU12. Microbiol Res 161(4):321–326. https://doi.org/10.1016/j.micres.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  65. Smitha S, Bhat SG (2012) Thermostable bacteriocin BL8 from Bacillus licheniformis isolated from marine sediment. J Appl Microbiol 114(3):688–694. https://doi.org/10.1111/jam.12097

    Article  CAS  Google Scholar 

  66. Martimani L, Varcamonti M, Naclerio G, de Felice M (2002) Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microb Cell Fact 1(1). https://doi.org/10.1186/1475-2859-1-1

  67. Kayalvizhi N, Gaunasekaran P (2010) Purification and characterization of a novel broad-spectrum bacteriocin from Bacillus licheniformis MKU3. Biotechnol Bioprocess Eng 15:365–370. https://doi.org/10.1007/s12257-009-0164-2

    Article  CAS  Google Scholar 

  68. Berić T, Stanković S, Draganić V, Kojić N, Lozo J, Fira D (2013) Novel antilisterial bacteriocin lichenocin 50.2 from Bacillus licheniformis VPS50.2 isolated from soil sample. J Appl Microbiol 116(3):502–510. https://doi.org/10.1111/jam.12393

  69. Wang G, Manns DC, Guron GK, Churey JJ, Worobo RW (2014) Large-scale purification, characterization, and spore outgrowth inhibitory effect of thurincin H, a bacteriocin produced by Bacillus thuringiensis SF361. Probiotics & Antimicro Prot 6:105–113. https://doi.org/10.1007/s12602-014-9159-1

    Article  CAS  Google Scholar 

  70. Pacheco-Cano RD, de la Fuente-Salcido NM, Salcedo-Hernandez R, León-Galván MF, Bideshi DK, Hernández-Guzmán H, Barboza-Corona JE (2014) Characterization, N-terminal sequencing, and classification of Tolworthcin 524: A bacteriocin produced by Bacillus thuringiensis subsp. tolworthi. Microbiol Res 169(12):948–953. https://doi.org/10.1016/j.micres.2014.04.005

  71. Gray EJ, Lee KD, Souleimanov AM, Di Falco MR, Zhou X, Ly A, Charles TC, Driscoll BT, Smith DL (2006) A novel bacteriocin, thuricin 17, produced by plant growth promoting rhizobacteria strain Bacillus thuringiensis NEB17: isolation and classification. J Appl Microbiol 100(3):545–554. https://doi.org/10.1111/j.1365-2672.2006.02822.x

    Article  CAS  PubMed  Google Scholar 

  72. Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S (2005) Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J Appl Microbiol 98(4):881–888. https://doi.org/10.1111/j.1365-2672.2004.02513.x

    Article  CAS  PubMed  Google Scholar 

  73. Kamoun F, Fguira IB, Hassen NBB, Mejdoub H, Lereclus D, Jaoua S (2011) Purification and characterization of a new Bacillus thuringiensis bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Appl Biochem Biotechnol 165:300–314. https://doi.org/10.1007/s12010-011-9252-9

    Article  CAS  PubMed  Google Scholar 

  74. Lee KH, Jun KD, Kim WS, Paik HD (2001) Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Lett Appl Microbiol 32(3):146–151. https://doi.org/10.1046/j.1472-765x.2001.00876.x

    Article  CAS  PubMed  Google Scholar 

  75. Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2015) Firmicutes, Tenericutes and Actinobacteria. In: Brock Biology of Microorganisms, 14th edn. Pearson, Michigan, pp 527–529

  76. Olmos J, Acosta M, Mendoza G, Pitones V (2020) Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Arch Microbiol 202(3):427–435. https://doi.org/10.1007/s00203-019-01757-2

    Article  CAS  PubMed  Google Scholar 

  77. González-Pastor JE (2011) Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol Rev 35(3):415–424. https://doi.org/10.1111/j.1574-6976.2010.00253.x

    Article  CAS  PubMed  Google Scholar 

  78. Msadek T, Kunst F, Rapoport G, Hoch JA, Strauch MA, Ordal GW, Márquez-Magaña L, Chamberlin MJ, Smith I, Setlow P (1993) Postexponential-phase phenomena. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology Press, Washingtonn DC, United States, pp 727–809. https://doi.org/10.1128/9781555818388

  79. Anthony T, Rajesh T, Kayalvizhi N, Gunasekaran P (2009) Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresour Technol 100(2):872–877. https://doi.org/10.1016/j.biortech.2008.07.027

    Article  CAS  PubMed  Google Scholar 

  80. Martínez-Cardeñas JA, de la Fuente-Salcido NM, Salcedo-Hernández R, Bideshi DK, Barboza-Corona JE (2012) Effects of physical culture parameters on bacteriocin production by Mexican strains of Bacillus thuringiensis after cellular induction. J Ind Microbiol Biotechnol 39(1):183–189. https://doi.org/10.1007/s10295-011-1014-8

    Article  CAS  PubMed  Google Scholar 

  81. Motta AS, Brandelli A (2008) Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. Strain P34. World J Microbiol Biotechnol 24:641–646. https://doi.org/10.1007/s11274-007-9520-6

  82. Wingfield PT (2001) Protein precipitation using ammonium sulfate. Curr Protoco Protein Scie APPENDIX 3(3F). https://doi.org/10.1002/0471140864.psa03fs13

  83. Koontz L (2014) Chapter one - TCA precipitation. In: Lorsch J (ed) Methods in Enzymology volume 541: Laboratory Methods in Enzymology: protein Part C. Academic Press, U S A, pp 3–10. https://doi.org/10.1016/B978-0-12-420119-4.00001-X

  84. Yoshikawa H, Hirano A, Arakawa T, Shiraki K (2012) Mechanistic insight into protein precipitation by alcohol. Int J Biol Macromol 50(3):865–871. https://doi.org/10.1016/j.ijbiomac.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  85. Zou J, Jiang H, Cheng H, Fang J, Huang G (2018) Strategies for screening, purification, and characterization of bacteriocins. Int J Biol Macromol 117(1):781–789. https://doi.org/10.1016/j.ijbiomac.2018.05.233

    Article  CAS  PubMed  Google Scholar 

  86. Jungbauer A, Hahn R (2009) Chapter twenty-two - Ion exchange chromatography. In: Burgess R, Deutscher MP (eds) Methods in Enzymology volume 463: Guide to Protein Purification, 2nd edn. Academic Press, U S A, pp 349–371. https://doi.org/10.1016/S0076-6879(09)63022-6

  87. Duong-Ly KC, Gabelli SB (2014) Chapter nine - Gel filtration chromatography (size exclusion chromatography) of proteins. In: Lorsch J (ed) Methods in Enzymology volume 541: Laboratory Methods in Enzymology: Protein Part C. Academic Press, U S A, pp 105–114. https://doi.org/10.1016/b978-0-12-420119-4.00009-4

  88. Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98(3):585–603. https://doi.org/10.1093/oxfordjournals.jbchem.a135315

    Article  CAS  PubMed  Google Scholar 

  89. Brunelle JL, Green R (2014) Chapter twelve - One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). In: Lorsch J (ed) Methods in Enzymology volume 541: Laboratory Methods in Enzymology: Protein Part C. Academic Press, U S A, pp 151–159. https://doi.org/10.1016/B978-0-12-420119-4.00012-4

  90. Zendo T, Nakayama J, Fujita K, Sonomoto K (2008) Bacteriocin detection by liquid chromatography/mass spectrometry for rapid identification. J Appl Microbiol 104(2):499–507. https://doi.org/10.1111/j.1365-2672.2007.03575.x

    Article  CAS  PubMed  Google Scholar 

  91. Wang Z (2010) Edman degradation. In: Comprehensive Organic Name Reactions and Reagents, Wiley-Interscience, Hoboken, USA, pp 954–958. https://doi.org/10.1002/9780470638859.conrr206

  92. Deutzmann R (2004) Structural Characterization of protein and peptides. In: Decker J, Reischl U (eds) Molecular Diagnosis of Infectious Diseases. Humana Press, Totowa, USA, pp 269–297. https://doi.org/10.1385/1-59259-679-7:269

  93. Lohans CT, Vederas JC (2014) Structural characterization of thioether-bridged bacteriocins. J Antibiot 67(1):23–30. https://doi.org/10.1038/ja.2013.81

    Article  CAS  Google Scholar 

  94. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79. https://doi.org/10.1146/annurev-bioeng-061008-124934

    Article  CAS  PubMed  Google Scholar 

  95. Standing KG (2003) Peptide and protein de novo sequencing by mass spectrometry. Curr Opin Struct Biol 13(5):595–601. https://doi.org/10.1016/j.sbi.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  96. Porcelli F, Ramamoorthy A, Barany G, Veglia G (2013) On the role of NMR spectroscopy for characterization of antimicrobialpeptides. In: Ghirlanda G, Senes A (eds) Methods in Molecular Biology. Humana Press, New Jersey, pp 159–180. https://doi.org/10.1007/978-1-62703-583-5_9

  97. López-Cuellar MR, Rodríguez AI, Chavarría-Hernandez N (2016) LAB bacteriocin applications in the last decade. Biotechnol Biotechnol Equip 30(6):1039–1050. https://doi.org/10.1080/13102818.2016.1232605

    Article  CAS  Google Scholar 

  98. Kyriakou PK, Ekblad B, Kristianen PE, Kaznessis YN (2016) Interaction of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations. Biochim Biophys Acta 1858(4):824–835. https://doi.org/10.1016/j.bbamem.2016.01.005

  99. Stone KJ, Strominger JL (1971) Mechanism of action of bacitracin: complexation with metal ion and C55-isoprenyl pyrophosphate. Proc Nat Acad Sci 68(12): 3223–3227. https://doi.org/10.1073/pnas.68.12.3223

  100. Dixon RA, Chopra I (1986) Leakage of periplasmic proteins from Escherichia coli mediated by polymyxin B nanopeptide. Antimicrob Agents Chemother 29(5): 781–788. https://doi.org/10.1128/AAC.29.5.781

  101. Poirel L, Jayol A, Nordmann P (2017) Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanism encoded by plasmids or chromosomes. Clin Microbiol Rev 30(2):557–596. https://doi.org/10.1128/cmr.00064-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Prince A, Sandhu P, Ror P, Dash E, Sharma S, Arakha M, Jha S, Akhter Y, Saleem M (2017) Corrigendum: lipid-II independent antimicrobial mechanism of nisin depends on its crowding and degree of oligomerization. Sci Rep 7. https://doi.org/10.1038/srep41346

  103. Kaur S, Kaur S (2015) Bacteriocins as potential anticancer agents. Front Pharmacol 6:272. https://doi.org/10.3389/fphar.2015.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Drider D, Bendali F, Naghmouchi K, Chikindas ML (2016) Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 8(4):177–182. https://doi.org/10.1007/s12602-016-9223-0

    Article  CAS  PubMed  Google Scholar 

  105. Baindara P, Korpole S, Grover V (2018) Bacteriocins: perspective for the development of novel anticancer drugs. Appl Microbiol and Biotechnol 102(24):10393–11048. https://doi.org/10.1007/s00253-018-9420-8

    Article  CAS  Google Scholar 

  106. Tan LTH, Chan KG, Pusparajah P, Lee WL, Chuah LH, Khan TM, Lee LH, Goh BH (2017) Targeting membrane lipid, a potential cancer cure? Front Pharmacol 8:12. https://doi.org/10.3389/fphar.2017.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Szlasa W, Zendran I, Zalesińska A, Tarek M, Kulbacka J (2020) Lipid composition of the cancer cell membrane. J Bioenerg Biomembr 52(5):321–342. https://doi.org/10.1007/s10863-020-09846-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shao Y, Wang X, Qiu X, Niu L, Ma Z (2021) Isolation and purification of a new Bacillus subtilis strain from deer dung with anti-microbial and anti-cancer activities. Curr Med Sci 41(4):832–849. https://doi.org/10.1007/s11596-021-2383-5

    Article  CAS  PubMed  Google Scholar 

  109. Ma EL, Choi YJ, Choi J, Pothoulakis C, Rhee SH, Im E (2010) The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and Erb3 inhibition. Int J Cancer 127(4):780–790. https://doi.org/10.1002/ijc.25011

Download references

Author information

Authors and Affiliations

Authors

Contributions

VM performed the literature search, wrote the manuscript text, and prepared figures. JO critically revised the manuscript, corrected and approved the final version.

Corresponding author

Correspondence to Jorge Olmos.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Ethical Standards Informed Consent

Not applicable.

Ethical Standards Animal Rights

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercado, V., Olmos, J. Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application. Probiotics & Antimicro. Prot. 14, 1151–1169 (2022). https://doi.org/10.1007/s12602-022-09966-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-022-09966-w

Keywords

Navigation