Log in

Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Cold-rolling with subsequent annealing was carried out to produce recrystallized structures with different grain sizes in an Al0.5CoCrFeNi high-entropy alloy to systematically investigate the grain growth behavior and varying properties. The results show that recrystallized microstructures can be achieved through an annealing process at 1200 °C for 75 min to 16 h, and the average grain size in this study ranges from 5.33 to 30.03 µm. The hardness shown to be affected through grain coarsening was then measured as a function of the grain size, and it is found to follow the classical Hall–Petch strengthening.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng, A. 2004;375–377:213.

    Article  Google Scholar 

  2. Yeh JW, Sk Chen, Lin SJ, Gan JY, Chin TS. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.

    Article  CAS  Google Scholar 

  3. Lu YP, Gao XX, Dong Y, Wang TM, Chen HL, Mao HH, Zhao YH, Jiang H, Cao ZQ, Li TJ, Guo S. Preparing bulk ultrafine-microstructure high-entropy alloys via direct solidification. Nanoscale. 2018;10(4):1912.

    Article  CAS  Google Scholar 

  4. Yuan Y, Wu Y, Tong X, Zhang H, Wang H, Liu XJ, Ma L, Suo HL, Lu ZP. Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 2017;125:481.

    Article  CAS  Google Scholar 

  5. Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK. Refractory high-entropy alloys. Intermetallics. 2010;18(9):1758.

    Article  CAS  Google Scholar 

  6. Hy YM, Liu XD, Guo NN, Wang L, Su YQ, Guo JJ. Microstructure and mechanical properties of NbZrTi and NbHfZrTi alloys. Rare Met. 2019;38(9):840.

    Article  Google Scholar 

  7. Jiang SY, Lin ZF, Xu HM. Microstructure and properties of as-cast and annealed AlCoCrFeNi high-entropy alloys. Chin J Rare Met. 2018;42(12):1241.

    Google Scholar 

  8. Huang HL, Wu Y, He JY, Wang H, Liu XJ, An K, Wu W, Lu ZP. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv Mater. 2017;29(30):7.

    Article  Google Scholar 

  9. Shun TT, Hsieh CY, Hung WJ, Lee CF. Age heat treatment of the CoCrFeNiTi0.3 high-entropy alloy. Mater Trans. 2018;59(5):730.

    Article  CAS  Google Scholar 

  10. Wu CL, Zhang S, Zhang CH, Zhang H, Dong SY. Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying. J Alloys Compd. 2017;698:761.

    Article  CAS  Google Scholar 

  11. Chen MR, Lin SJ, Yeh JW, Chuang MH, Chen SK, Huang YS. Effect of vanadium addition on the microstructure hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy. Metall Mater Trans A. 2006;37(5):1363.

    Article  Google Scholar 

  12. Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, George EP. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy. J Alloys Compd. 2015;623:348.

    Article  CAS  Google Scholar 

  13. Zhang AJ, Han JS, Su B, Meng JH. A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy. Mater Sci Eng, A. 2018;731:36.

    Article  CAS  Google Scholar 

  14. Satake M, Bitoh T. Synthesis of Fe-Co-Ni-(B, Si, C) ferromagnetic high entropy amorphous alloys and their thermal and magnetic properties. J Jpn Soc Powder Powder Metall. 2018;65(7):401.

    Article  Google Scholar 

  15. Lim KR, Lee KS, Lee JS, Kim JY, Chang HJ, Na YS. Dual-phase high-entropy alloys for high-temperature structural applications. J Alloys Compd. 2017;728:1235.

    Article  CAS  Google Scholar 

  16. Li ZM, Tasan CC, Pradeep KG, Raabe D. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior. Acta Mater. 2017;131:323.

    Article  CAS  Google Scholar 

  17. Sriharitha R, Murty BS, Kottada RS. Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics. 2013;32:119.

    Article  CAS  Google Scholar 

  18. Guo S, Chun N, Lu J, Liu CT. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 2011;109(10):103505.

    Article  Google Scholar 

  19. Ogura M, Fukushima T, Zeller R, Dederichs PH. Structure of the high-entropy alloy AlxCrFeCoNi: fcc versus bcc. J Alloys Compd. 2017;715:454.

    Article  CAS  Google Scholar 

  20. Rao JC, Diao HY, Ocelik V, Vainchtein D, Zhang C, Kuo C, Tang Z, Guo W, Poplawsky JD, Zhou Y, Liaw PK, De Hosson JTM. Secondary phases in AlxCoCrFeNi high-entropy alloys: an in situ TEM heating study and thermodynamic appraisal. Acta Mater. 2017;131:206.

    Article  CAS  Google Scholar 

  21. Sheng WJ, Yang X, Zhu J, Wang C, Zhang Y. Amorphous phase stability of NbTiAlSiNx high-entropy films. Rare Met. 2018;37(8):682.

    Article  CAS  Google Scholar 

  22. Zhu JM, Meng JL, Liang JL. Microstructure and mechanical properties of multi-principal component AlCoCrFeNiCux alloy. Rare Met. 2016;35(5):385.

    Article  CAS  Google Scholar 

  23. Yang TF, **a SQ, Liu S, Wang CX, Liu SS, Zhang Y, Xue JM, Yan S, Wang YG. Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Mater Sci Eng, A. 2015;648:15.

    Article  CAS  Google Scholar 

  24. Hou JX, Zhang M, Ma SG, Liaw PK, Qiao JW. Strengthening in Al0.25CoCrFeNi high-entropy alloys by cold rolling. Mater Sci Eng, A. 2017;707:593.

    Article  CAS  Google Scholar 

  25. Wang Z, Gao MC, Ma SG, Yang HJ, Wang ZH, Ziomek-Moroz M, Qiao JW. Effect of cold rolling on the microstructure and mechanical properties of Al0.25CoCrFe1.25Ni1.25 high-entropy alloy. Mater Sci Eng, A. 2015;645:163.

    Article  CAS  Google Scholar 

  26. Nourbakhsh S, Nutting J. The high strain deformation of an aluminium-4% copper alloy in the supersaturated and aged conditions. Acta Metall. 1980;28(3):357.

    Article  CAS  Google Scholar 

  27. Guo T, Li JS, Wang J, Wang WY, Liu Y, Luo XM, Kou HC, Beaugnon E. Microstructure and properties of bulk Al0.5CoCrFeNi high-entropy alloy by cold rolling and subsequent annealing. Mater Sci Eng, A. 2018;729:141.

    Article  CAS  Google Scholar 

  28. Ma LL, Wang L, Nie ZH, Wang FC, Xue YF, Zhou JL, Cao TQ, Wang YD, Ren Y. Reversible deformation-induced martensitic transformation in Al0.6CoCrFeNi high-entropy alloy investigated by in situ synchrotron-based high-energy X-ray diffraction. Acta Mater. 2017;128:12.

    Article  Google Scholar 

  29. Ma SG, Qiao JW, Wang ZH, Yang HJ, Zhang Y. Microstructural features and tensile behaviors of the Al0.5CrCuFeNi2 high-entropy alloys by cold rolling and subsequent annealing. Mater Des. 2015;88:1057.

    Article  CAS  Google Scholar 

  30. Zener C, Smith CS. Grains, phases and interfaces: an interpretation of microstructure. Trans Metall Soc AIME. 1948;175:11.

    Google Scholar 

  31. Nishizawa T, Ohnuma I, Ishida K. Examination of the Zener relationship between grain size and particle dispersion. Mater Trans, JIM. 1997;38(11):950.

    Article  CAS  Google Scholar 

  32. Li DY, Gao MC, Hawk JA, Zhang Y. Annealing effect for the Al0.3CoCrFeNi high-entropy alloy fibers. J Alloys Compd. 2019;778:23.

    Article  CAS  Google Scholar 

  33. Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B. 1951;64:747.

    Article  Google Scholar 

  34. Sriharitha R, Murt BS, Kottada RS. Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J Alloys Compd. 2014;583:419.

    Article  CAS  Google Scholar 

  35. Gwalani B, Soni V, Lee M, Mantri S, Ren Y, Banerjee R. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy. Mater Des. 2017;121:254.

    Article  CAS  Google Scholar 

  36. Wu Z, Bei H, Otto F, Pharr GM, George EP. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics. 2014;46:131.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51571161 and 51774240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, HX., Li, JS., Guo, T. et al. Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes. Rare Met. 39, 156–161 (2020). https://doi.org/10.1007/s12598-019-01320-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01320-4

Keywords

Navigation