Log in

Assessment of Groundwater Vulnerability Risk in Shallow Aquifers of Kandaihimmat Watershed, Hoshangabad, Madhya Pradesh

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

Currently, groundwater contamination has become a challenging problem, because of its susceptibility to pollution both by natural and anthropogenic processes. The study focused on the appraisal of vulnerability chances of shallow aquifers of Kandaihimmat watershed. Employing the DRASTIC model which is based on seven hydrogeological data layers viz.: depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone and hydraulic conductivity of the aquifer. By integrating all these data layers within GIS environment vulnerability index of groundwater was prepared. The estimated vulnerability index varies between 121 and 206 and was divided into three vulnerable zones namely high, moderate and low. The results of the study reveal that 38.28 % area of the watershed is coming under low risk, 34.32 % under medium risk and 27.39 % to high risk. Furthermore, validation of the model was done by nitrate contamination in groundwater of the watershed. Results have shown that in high vulnerable zone nitrate was found >10 mg/l, in moderate zone 5–10 mg/l, while in low vulnerable zone 0–5 mg/l. The model has been found applicable for the existing watershed and will help local authorities for managing the groundwater resources of the studied area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, L., Bennet, T., Lehr, J.H. and Petty, R.J. (1987) DRASTIC: A standardized system for evaluating groundwater pollution potential using hydro geologic settings. USEPA document no. EPA/600/2–85–018.

    Google Scholar 

  • Atkinson, S.F., and Thomlinson, J.R. (1994) An Examination of Ground Water Pollution Potential through GIS Modeling, ASPRS/ACSM Annual Convention and Exposition: Technical Papers, Reno, Nevada.

    Google Scholar 

  • Adamat, R., Foster, I., and Baban, S. (2003) Groundwater vulnerability and risk map** for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC. Appld. Geograp., v.23, pp.303–324.

    Article  Google Scholar 

  • Almasri, M.N. (2008) Assessment of intrinsic vulnerability to contamination for Gaza coastal aquifer Palestine. Jour. Environ. Managmt., v.88(4), pp.577–593.

    Article  Google Scholar 

  • Akhtar Malik Muhammad, Tang Zhonghua, Ammar Salman Dawood and Bailey, Earl (2015) Evaluation of local groundwater vulnerability based on DRASTIC index method in Lahore, Pakistan. Geofísica Internacional v.54(1), pp.67–81.

    Google Scholar 

  • Burkart, M.R., Kolpin, D.W. and James, D.E. (1999) Assessing groundwater vulnerability to agrichemical contamination in the Midwest US, Water Sci. Tech., v.39(3), pp.103–112.

    Google Scholar 

  • Babiker, I.S., Mohamed, A.A., Hiyama, T. and Kato, K. (2005) A GIS–based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci. Total Environ., v.345, pp.127–14.

    Article  Google Scholar 

  • Becker, M. (2006) Potential for satellite remote sensing of ground water. Ground Water, v.44(2), pp.306–31.

    Article  Google Scholar 

  • Brindha, K. and Elango, L. (2015) Cross comparison of five popular groundwater pollution vulnerability index approaches. Jour. Hydrol., v.524, pp.595–613.

    Article  Google Scholar 

  • Chandrashekhar, H., Adiga, S., Lakshminarayana, V., Jagdeesha, C.J. and Nataraju, C. (1999) A case study using the model ‘DRASTIC’ for assessment of groundwater pollution potential. In: Proceedings of the ISRS national symposium on remote sensing applications for natural resources, June 19–21.

    Google Scholar 

  • Bangalore Chitsazan, M. and Akhtari, Y. (2009) A GIS–based DRASTIC Model for Assessing Aquifer Vulnerability in Kherran Plain, Khuzestan, Iran, Water Resour. Managmt., v.23, pp.1137–1155.

    Google Scholar 

  • Chonattu Jaseela, Kavya Prabhakar, Puthenveedu Sadasivan and Pillai Harikumar (2016) Application of GIS and DRASTIC Modeling for Evaluation of Groundwater Vulnerability near a Solid Waste Disposal Site. Internat. Jour. Geosci., v.7, pp.558–571.

    Article  Google Scholar 

  • Fritch, T.G., McKnight, C.L., Yelderman, J.C. and Arnold, J.G. (2000) Environmental auditing: An aquifer vulnerability assessment of the Paluxy aquifer, Central Texas, USA, using GIS and a modified DRASTIC approach. Jour. Environ. Managmt., v.25(3), pp.337–345.

    Google Scholar 

  • Fred W., Besien, T. and Kolpin, D.W. (2002) Groundwater vulnerability: interactions of chemical and site properties. Sci. Total Environ. v.299(1), pp.131–14.

    Google Scholar 

  • Foster, SSD., and Chilton, P.J. (2003) Groundwater: the processes and global significance of aquifer degradation. Philosophical Transactions of the Royal Society of London, B, 358, 1957–1972.

    Google Scholar 

  • Ghosh, A., Tiwari, A.K. and Das, S. (2015) A GIS based DRASTIC model for assessing groundwater vulnerability of Katri Watershed, Dhanbad, India. Modeling Earth Systems and Environment, v.1(3), pp.11.

    Article  Google Scholar 

  • Hrkal, Z. (2001) Vulnerability of groundwater to acid deposition, Jizerske Mountains, northern Czech Republic: construction and reliability of a GIS–based vulnerability map. Jour. Hydrogeol., v.9, pp.348–357.

    Article  Google Scholar 

  • Hamza, M.H., Added, A., Rodriguez, R., Abdeljaoued, S., and Mammou, B. (2007) A GIS–based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi–arid region (Metline–Ras Jebel–Raf Raf aquifer, Northern Tunisia). Jour. Environ. Managmt., v.84, pp.12–19.

    Article  Google Scholar 

  • Iqbal, J., Pathak, G., and Gorai, A.K. (2015) Development of hierarchical fuzzy model for groundwater vulnerability to pollution assessment; Arab Jour. Geosci., v.8, pp.2713–2728.

    Google Scholar 

  • Jamrah, A., Futaisi, A.A., Rajmohan, N. and Al–Yaroubi, S. (2008) Assessment of groundwater vulnerability in the coastal region of Oman using DRASTIC index method in GIS environment. Environ. Monit. Assess., v.147(1–3), pp.125–138.

    Article  Google Scholar 

  • Knox, R.C., Sabatini, D.A. and Canter, L.W. (1993)subsurface transport and fate processes. Lewis publishers, USA. Boca Raton, FL, 430p.

    Google Scholar 

  • Kalinski, R.J., Kelly, W.E., Bogardi, I., Ehrman, R.L. and Yamamoto, P.D. (1994) Correlation between DRASTIC vulnerabilities and incidents of VOC contamination of municipal wells in Nebraska. Ground Water, v.32(1), pp.31–34.

    Article  Google Scholar 

  • Kimand, Y.J. and Hamm, S. (1999) Assessment of the potential for groundwater contamination using the DRASTIC/EGIS technique, Cheongju area, South Korea. Hydrogeol. Jour., v.7(2), pp.227–235.

    Article  Google Scholar 

  • Khan, A., Khan, H.H., Umar, R. and Khan, M.H. (2014) An integrated approach for aquifer vulnerability map** using GIS and rough sets: Study from an alluvial aquifer in north India; Hydrogeol. Jour., v.22, pp.1561–1572.

    Google Scholar 

  • Kumar, P., Debnath, S.K., Thakur, P.K. and Bansod, B.K.S. (2016) Assessment of the effectiveness of DRASTIC in predicting the vulnerability of groundwater to contamination: A case study from Fatehgarh Sahib district in Punjab, India. Environ. Earth Sci., v.75, pp.879.

    Article  Google Scholar 

  • Lowe M. and Butler, M. (2003) Groundwater sensitivity and vulnerability to pesticides, Herber and Round Valleys, Wasatch County; Utah Geological Survey; Salt Lake City, UT: USA.

    Google Scholar 

  • Leone, A., Ripa, M.N., Uricchio, V., Deak, J., and Vargay, Z. (2009) Vulnerability and risk evaluation of agricultural nitrogen pollutionfor Hungary’s main aquifer using DRASTIC and GLEAMS models. Jour. Environ. Managmt., v.90, pp.2969–297.

    Article  Google Scholar 

  • Lathamani, R., Janardhana, M.R., Mahalingam, B. and Suresha S. (2015) Evaluation of aquifer vulnerability using Drastic Model and GIS: A case study of Mysore City, Karnataka, India; Aquatic Procedia, v.4, pp.1031–1038.

    Google Scholar 

  • Margat, J. (1968) Vulnerabilite desnappes d’eau souterraineala pollution. Basede lacartographie, Doc. BRGM, 68 SGL 198 HYD. Orlean, France.

    Google Scholar 

  • Mehra, M., Oinam B. and Singh C.K. (2016) Integrated assessment of groundwater for agricultural use in Mewat district of Haryana, India using geographical information system (GIS); Jour. Indian Soc. Remote Sens. v.44(5), pp.747–758.

    Google Scholar 

  • Mondal, N.C., Adike, S., Singh, V.S. Ahmed, S. and Jayakumar, K.V. (2017) Determining shallow aquifer vulnerability by the DRASTIC model and hydrochemistry in granitic terrain, southern India. Jour. Earth System Sci., v.126, pp.89

    Article  Google Scholar 

  • Navada, S.V., Nair, A.R., Rao, S.M., Paliwall, B.L. and Doshi C.S. (1993) Groundwater recharge studies in arid region of Jalore, Rajasthan using isotope techniques. Jour. Arid Environ., v.24, pp.125–133.

    Article  Google Scholar 

  • National Bureau of Soil Sciences & Land use Planning NBSS&LUP, ICAR, Nagpur (1996). Soils of Madhya Pradesh, NBSS Publ.59

    Google Scholar 

  • Nasri, N., Chebil, M., Guellouz L., Bouhlila, R., Maslouhi, A., Ibnoussina, M. (2015) Modelling nonpoint source pollution by nitrate of soil in the Mateur plain, northeast of Tunisia. Arab Jour. Geosci., v.8, pp.1057–107.

    Article  Google Scholar 

  • Pathak, D. R., Hiratsuka, A., Awata, I. and Chen, L. (2009) Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS–based DRASTIC model, Environ. Geol., v.57, pp.1569–157.

    Google Scholar 

  • Prasad, K. and Shukla, J. P. (2014) Assessment of groundwater vulnerability using GIS–based DRASTIC technology for the basaltic aquifer of Burhner watershed, Mohgaon block, Mandla (India), Curr. Sci., v.107(10), pp.1649–1656.

    Google Scholar 

  • Rosen, L. (1994) Study of the DRASTIC methodology with the emphasis onSwedish conditions. In Program and abstracts of the 37th conference of the International Association for Great Lakes Research and Estuarine Research Federation, Buffalo, NY: IAGLR, pp.166

    Google Scholar 

  • Rao, S.M., and Mamatha, P. (2004) Water quality in sustainable water management. Curr. Sci., v.87(7), pp.942–94.

    Google Scholar 

  • Ritzema, H.P. (2006) Determining the Saturated Hydraulic Conductivity (Oosterbaan R.J and Nijland H. J.) In: H. P. Ritzema (Ed) Drainage Principles and Applications (pp.283–294). ILRI Publ. 16, Wageningen, The Netherlands.

    Google Scholar 

  • Rahman, A. (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh India. Appld. Geogr., v.28(1), pp.32–5.

    Article  Google Scholar 

  • Smedema, L.K. and Rycroft, D.W. (1983) Land drainage: planning and design of Agricultural Drainage Systems. Batsford, London, 376p.

    Google Scholar 

  • Smith, P. A., Scott, H. D., and Fugitt, T. (1994) Influence of geographic database scale on prediction of groundwater vulnerability to pesticides. Jour. Soil Contamination, v.3, pp.285–298.

    Article  Google Scholar 

  • Sadek M., and El–Samie A.S. (2001) Pollution vulnerability of the quaternary aquifer near Cairo, Egypt, as indicated by isotopes and hydrochemistry. Hydrogeol. Jour., v.9(3), pp.273–281.

    Article  Google Scholar 

  • Sener E., Sener S., and Davraz, A. (2009) Assessment of aquifer vulnerability based on GIS and DRASTIC methods: A case study of the Senirkent–Uluborlu Basin (Isparta, Turkey). Hydrogeol. Jour., v.17, pp.2023–203.

    Article  Google Scholar 

  • Saha D. and Alam F. (2014) Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intense agriculture area of the Gangetic plains India. Environ. Monit. Assess., v.186(12), pp.8741–876.

    Article  Google Scholar 

  • Sahu, P.C. and Nandi, D. (2015) Evaluation of Ground Water Pollution Potential Using Drastic Model: A Case Study in Berhampur City, Orissa. Internat. Jour. Geol. Earth Environ. Sci., v.5(3), pp.55–61.

    Google Scholar 

  • Singh, A., Srivastav, S. K., Kumar, S., and Chakrapani, G. J. (2015) A modified–DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India, Environ. Earth. Sci., v.4, pp.5475–5490.

    Article  Google Scholar 

  • Sinha, M.K., Verma, M.K., Ahmad, I., Baier, K. Jha, R. and Azzam, R. (2016) Assessment of Groundwater Vulnerability Using Modified DRASTIC Model in Kharun Basin, Chhattisgarh, India. Arabian Jour. Geosci., 9, 1–22.

    Book  Google Scholar 

  • Todd, D. K. (1980) Groundwater hydrology (2nd ed.). New York, NY: Wiley.

    Google Scholar 

  • US General Accounting Office (GAO). (1991). Groundwater protection: Measurement of relative vulnerability to pesticide contamination. Washington, DC: US General Accounting Office. GAO/PEMD–92–8

    Google Scholar 

  • Tesoriero, A.J., Inkpen, E.L., Voss, F.D. (1998) Assessing groundwater vulnerability using logistic regression, Proceedings for the Source Water Assessment and Protection 98 Conference, Dallas, TX, pp.157–165.

    Google Scholar 

  • Thapinta, A., and Hudak, P.F. (2003) Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand. Environ. Internat., v.29(1), pp.87–9.

    Article  Google Scholar 

  • Tahlawi Mohamed, R. El., Mohamed Abo–El Kassem., Gamal Y. Baghdadi., and Hussein A. Saleem (2016) Assessment of Groundwater Vulnerability–A Case Study. Internat. Jour. Advanced Remote Sensing and GIS, v.5(2) pp.1561–157.

    Google Scholar 

  • Tiwari, A.K., Singh, P.K., and Maio, M.D. (2016) Evaluation of aquifer vulnerability in a coal mining of India by using GIS–based DRASTIC model; Arab Jour. Geosci. v.9, pp.438.

  • Umar, R., and Ahmed, I., Alam, F. (2009) Map** groundwater vulnerable zones using modified DRASTIC approach of an alluvial aquifer in parts of central Ganga plain, Western Uttar Pradesh. Jour. Geol. Soc. India, v.73(2), pp.93–20.

    Article  Google Scholar 

  • Varol, S.O. and Davraz, A. (2010) Hydrogeological investigation of Sarkikaraagac Basin (Isparta,Turkey) and groundwater vulnerability. Water Internat., v.35(2), pp.177–19.

    Article  Google Scholar 

  • Wang, Y., Merke, B.J., Li, Y., Ye, H., Fu, S. and Ihm, D. (2007) Vulnerability of groundwater in quaternary aquifers to organic contaminants: A case study in Wuhan City, China. Environ. Geol., v.53, pp.479–48.

    Article  Google Scholar 

  • Yeh PJF., Swenson, S.C., Famiglietti, J.S. and Rodell, M. (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE), Water Resour. Res. v.42(12), pp.W12203

    Google Scholar 

  • Yin, Lihe., Eryong Zhang., **aoyong Wang., Jochen Wenninger., Jiaqiu Dong., Li Guo., **ting Huang (2013) GIS–based DRASTIC model for assessing groundwater vulnerability in the Ordos Plateau, China. Environ. Earth Sci., v.69, pp.171

    Article  Google Scholar 

  • Zhou J., Li G., Liu F., Wang Y. and Guo X. (2010) DRASTIC model and its application in assessing groundwater vulnerability in arid area: A case study of pore phreatic water in Tarim Basin, **njiang Northwest China. Environ. Earth Sci., v.60(5), pp.1055–1063.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Subzar Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, M.S., Shukla, J.P. Assessment of Groundwater Vulnerability Risk in Shallow Aquifers of Kandaihimmat Watershed, Hoshangabad, Madhya Pradesh. J Geol Soc India 93, 199–206 (2019). https://doi.org/10.1007/s12594-019-1152-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-019-1152-6

Navigation