Log in

The effect of boron oxide on the crystallization behavior of MgAl2O4 spinel phase during the cooling of the CaO-SiO2-10 mass.% MgO-30 mass.%Al2O3 systems

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The microstructural characteristics of the CaO-SiO2-B2O3-10 mass.% MgO-30 mass.% Al2O3 systems solidified during slow cooling from 1600 °C were investigated using SEM-EDS and a thermochemical computation package. The effect of boron oxide on the crystallization behavior of the spinel in the aluminosilicate system was observed because boron oxide is believed to become a potential flux to reduce the melting point of the liquid oxides. The primary crystalline phase was spinel, mainly MgAl2O4, irrespective of the boron content. The liquidus temperature T L continuously decreased as the boron oxide content increased, indicating that the boron oxide decreased the activity of the MgAl2O4 spinel phase in liquid melts at high temperatures. The size of the spinel crystals increased as the temperature range for the solid + liquid coexisting region, viz. the mushy zone, increased. In the present systems, because the T L continuously decreased with the increase in the boron oxide content, the viscosity of the liquid oxide may have affected the crystallization behavior of the spinel during cooling. Based on these results, an injection of a small amount of B2O3 flux into molten steel containing liquid aluminosilicate inclusions is not recommended because large spinel crystals can originate from the changes in the thermophysical properties of the liquid inclusions due to the incorporation of boron oxide into the aluminosilicate networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. U. Koh, H. G. Jung, and K. B. Kang, J. Kor. Inst. Met. & Mater. 46, 257 (2008).

    CAS  Google Scholar 

  2. J. J. Kim and J. B. Lee, J. Kor. Inst. Met. & Mater. 46, 809 (2008).

    CAS  Google Scholar 

  3. H. Arai, K. Matsumoto, S. I. Shimasaki, and S. Taniguchi, ISIJ Int. 49, 965 (2009).

    Article  CAS  Google Scholar 

  4. M. A. Van Ende, M. Guo, R. Dekkers, M. Burty, J. Van Dyck, P. T. Jones, B. Blanpain, and P. Wollant, ISIJ Int. 49, 1133 (2009).

    Article  Google Scholar 

  5. M. Jiang, X. Wang, B. Chen, and W. Wang, ISIJ Int. 50, 95 (2010).

    Article  CAS  Google Scholar 

  6. J. H. Park, J. Am. Ceram. Soc. 89, 608 (2006).

    Article  CAS  Google Scholar 

  7. J. H. Park, CALPHAD 31, 428 (2007).

    Article  CAS  Google Scholar 

  8. J. H. Park, Metall. Mater. Trans. B 38B, 657 (2007).

    Article  CAS  Google Scholar 

  9. J. H. Park, Mater. Sci. Eng. A 472, 43 (2008).

    Article  Google Scholar 

  10. J. H. Park and H. Todoroki, ISIJ Int. 50, 1333 (2010).

    Article  CAS  Google Scholar 

  11. P. Rocabois, J. N. Pontoire, J. Lahmann, and H. Gaye, J. Non-Cryst. Solids 282, 98 (2001).

    Article  CAS  Google Scholar 

  12. www.factsage.com.

  13. C. Bale, E. Belisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. B. Kang, J. Melancon, A. D. Pelton, C. Robelin, and S. Petersen, CALPHAD 33, 295 (2009).

    Article  CAS  Google Scholar 

  14. J. H. Park, I. H. Jung, and S. B. Lee, Met. Mater. Int. 15, 677 (2009).

    Article  CAS  Google Scholar 

  15. M. O. Suk and J. H. Park, J. Am. Ceram. Soc. 92, 717 (2009).

    Article  CAS  Google Scholar 

  16. J. H. Park, J. G. Park, D. J. Min, Y. E. Lee, and Y. B. Kang, J. Eur. Ceram. Soc. 30, 3181 (2010).

    Article  CAS  Google Scholar 

  17. J. H. Park, M. O. Suk, I. H. Jung, M. Guo, and B. Blanpain, Steel Res. Int. 81, 860 (2010).

    Article  CAS  Google Scholar 

  18. J. H. Park, G. H. Park, and Y. E. Lee, ISIJ Int. 50, 1078 (2010).

    Article  CAS  Google Scholar 

  19. K. Fujii, T. Nagasaka, and M. Hino, ISIJ Int. 40, 1059 (2000).

    Article  CAS  Google Scholar 

  20. K. C. Mills, Diffusion coefficients in molten slags, in Slag Atlas, 2 nd ed., Verlag Stahleisen GmbH, Dusseldorf (1995).

    Google Scholar 

  21. R. L. A. Everman and R. F. Cooper, J. Am. Ceram. Soc. 86, 487 (2003).

    Article  CAS  Google Scholar 

  22. J. F. Stebbins, private communication.

  23. M. K. Naskar and M. Chatterjee, J. Eur. Ceram. Soc. 24, 3499 (2004).

    Article  CAS  Google Scholar 

  24. S. Charkraborty, Diffusion in Silicate Melts, in Structure, Dynamics and Properties of Silicate Melts, Mineralogical Society of America, WA (1995).

    Google Scholar 

  25. D. R. Uhlmann and H. Yinnon, Glass: Science and Technology, Vol. 1, ch. 1, Academic Press, New York, NY (1983).

    Google Scholar 

  26. A. M. Sawvel, S. C. Chinn, W. L. Bourcier, and R. S. Maxwell, Chem. Mater. 17, 1493 (2005).

    Article  CAS  Google Scholar 

  27. D. Caurant, O. Majeurus, E. Fadel, M. Lenoir, C. Gervais, and O. Pinet, J. Am. Ceram. Soc. 90, 774 (2007).

    Article  CAS  Google Scholar 

  28. T. Sun, H. **ao, W. Guo, and X. Hong, Ceram. Int. 36, 821 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H. The effect of boron oxide on the crystallization behavior of MgAl2O4 spinel phase during the cooling of the CaO-SiO2-10 mass.% MgO-30 mass.%Al2O3 systems. Met. Mater. Int. 16, 987–992 (2010). https://doi.org/10.1007/s12540-010-1220-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-010-1220-3

Keywords

Navigation