Log in

Thermal conductivity prediction of MgAl2O4: a non-equilibrium molecular dynamics calculation

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Magnesium aluminate spinel (MgAl2O4) is widely used in steel metallurgy industry. Thermal conductivity at high temperature significantly influences the cooling process of blast furnace and the heat preservation of steel converter. The effect of external (temperature) and internal (antisite defect and grain boundary) factors on the thermal conductivity of MgAl2O4 was studied with non-equilibrium molecular dynamics. The main factors affecting the thermal conductivity of MgAl2O4 were summarized. In the temperature range of 100–2000 K, the results showed that the thermal conductivity of MgAl2O4 changed from 11.54 to 4.95 W/(m K) with the increase in temperature and was relatively stable at the temperature above 1000 K. The thermal conductivity of MgAl2O4 declined first and then rose with the increase in the antisite defects, and the minimum value was 6.95 W/(m K) at the inversion parameter i = 0.35. In addition, grain boundaries reduced the thermal conductivity of MgAl2O4 by 20%–30% at temperature below 1000 K comparing with the non-grain boundary system. The grain boundary rotation angle at temperature above 1000 K had less effect on the thermal conductivity than that below 1000 K. Present simulation scheme for thermal conductivity of MgAl2O4 can also be applied to the study of other nonmetallic ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.L. Xu, X.L. Guo, Y.J. Zhai, X.Y. Ren, S.P. Hu, X.J. Liu, Z. Liu, Z.N. Zhou, Refractories Forum 1 (2015) 83–85.

    Google Scholar 

  2. W.H. Tong, F.M. Shen, W.Z. Wang, Y.S. Yang, Acta Metall. Sin. 38 (2002) 983–988.

    Google Scholar 

  3. K. Cao, Study and application on complex lining of rotary kiln, Wuhan University of Science and Technology, Wuhan, China, 2006.

    Google Scholar 

  4. J. Li, Fabrication and properties of transparent magnesium aluminate spinel ceramics, Harbin Institute of Technology, Harbin, China, 2015.

    Google Scholar 

  5. B. Li, Development of refractories and technology of ladle, Northeastern University, Shenyang, China, 2012.

    Google Scholar 

  6. H. Wang, Study on blast furnace lining thickness and temperature online monitoring, Inner Mongolia University of Science and Technology, Baotou, China, 2015.

    Google Scholar 

  7. J. Wei, X.L. Hou, J.G. Zhou, J. Iron Steel Res. 6 (1994) No. S1, 1–9.

    Google Scholar 

  8. P. Shukla, A. Chernatynskiy, J.C. Nino, S.B. Sinnott, S.R. Phillpot, J. Mater. Sci. 46 (2011) 55–62.

    Article  Google Scholar 

  9. S.A.T. Redfern, R.J. Harrison, H.S.C. O’Neill, D.R.R. Wood, American Mineralogist 84 (1999) 299–310.

    Article  Google Scholar 

  10. S. Morooka, S. Zhang, T. Nishikawa, H. Awaji, J. Ceram. Soc. Jpn. 107 (1999) 1225–1228.

    Article  Google Scholar 

  11. S. Lin, Thermal conductivity of boron nitride by molecular dynamic simulations, Southeast University, Nan**g, China, 2015.

    Google Scholar 

  12. B. Liu, Thermal conductivity of MoS2 thin films by molecular dynamic simulations, Southeast University, Nan**g, China, 2015.

    Google Scholar 

  13. Q. Chen, Investigation on heat transfer characteristics of nanoscale fractal structure by molecular dynamics simulation, Southeast University, Nan**g, China, 2015.

    Google Scholar 

  14. D.P. Sellan, E.S. Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Phys. Rev. B 81 (2010) 214305.

    Article  Google Scholar 

  15. F. Stucki, F. Greuter, Appl. Phys. Lett. 57 (1990) 446–448.

    Article  Google Scholar 

  16. M.R. Harrison, P.P. Edwards, J.B. Goodenough, Philos. Mag. B 52 (1985) 679–699.

    Article  Google Scholar 

  17. S. Tosawat, W. G**dara, T. Chanchana, A. Vittaya, Chin. Phys. Lett. 27 (2010) 026501.

    Article  Google Scholar 

  18. B. Schulz, G. Haase, in: Proceedings of the Ninth German-Yugoslav Meeting on Materials Science and Development, Hirsau, Stuttgart, 1989, pp. 16–19.

  19. R.J.M. Konings, K. Bakker, J.G. Boshoven, H. Hein, M.E. Huntelaar, R.R. van der Laan, J. Nucl. Mater. 274 (1999) 84–90.

    Article  Google Scholar 

  20. N. Nitani, T. Yamashita, T. Matsuda, S.I. Kobayashi, T. Ohmichi, J. Nucl. Mater. 274 (1999) 15–22.

    Article  Google Scholar 

  21. K.R. Wilkerson, J.D. Smith, T.P. Sander, J.G. Hemrick, J. Am. Ceram. Soc. 96 (2013) 859–866.

    Article  Google Scholar 

  22. C.C. Gibson, D.L. Taylor, R.H. Bogaard, Database on Properties of Selected Infrared Window and Dome Materials. High Temperature Materials Information Analysis Center Report 27, Defense Technical Information Center, 1996.

  23. D.C. Harris, L.F. Johnson, R. Seaver, T. Lewis, G. Turri, M.A. Bass, D.E. Zelmon, N. Haynes, Opt. Eng. 52 (2013) 087113.

    Article  Google Scholar 

  24. R.L. Rudkin, Thermal Diffusivity Measurements on Ceramics at High Temperatures, Proc. 3rd Conf. Thermal Cond. 1963, pp. 794–808.

  25. D.W. Roy, G.G. Martin Jr., in: Proc. SPIE 1760, Window and Dome Technologies and Materials III, International Society for Optics and Photonics, San Diego, CA, USA, 1992, pp. 2–13.

  26. M. Burghartz, H. Matzke, C. Léger, G. Vambenepe, M. Rome, J. Alloy. Compd. 271–273 (1998) 544–548.

    Article  Google Scholar 

  27. F.A. Kröger, H.J. Vink, in: Solid State Physics, Vol. 3, Academic Press Inc., Elsevier, 1956, pp. 307–435.

    Google Scholar 

  28. H. Schmalzried, Progress in Solid State Chemistry 2 (1965) 265–303.

    Article  Google Scholar 

  29. J.A. Ball, M. Pirzada, R.W. Grimes, M.O. Zacate, D.W. Price, B.P. Uberuaga, J. Phys. Condensed Matter 17 (2005) 7621.

    Article  Google Scholar 

  30. S.P. Chen, M. Yan, Philos. Mag. Lett. 73 (1996) 51–62.

    Article  Google Scholar 

  31. I.J. Shon, S.M. Kwak, J.M. Doh, B.J. Park, J.K. Yoon, Res. Chem. Intermed. 39 (2013) 1291–1299.

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation of China (Grant Nos. 21233010 and 51474047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Cm., Fan, Hw., Wang, Xd. et al. Thermal conductivity prediction of MgAl2O4: a non-equilibrium molecular dynamics calculation. J. Iron Steel Res. Int. 27, 500–505 (2020). https://doi.org/10.1007/s42243-020-00364-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00364-6

Keywords

Navigation