Log in

Hierarchical porous yolk-shell Co-N-C nanocatalysts encaged ingraphene nanopockets for high-performance Zn-air battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The rational design and preparation of promising cathode electrocatalysts with excellent activity and strong stability for metal-air batteries is a huge challenge. In this work, we innovate an approach of combining solvothermal with high-temperature pyrolysis utilizing zeolitic imidazolate framework (ZIF)-8 and ZIF-67 as the template to synthesize a novel hybrid material of hierarchical porous yolk-shell Co-N-C polyhedron nanocatalysts engaged in graphene nanopocket (yolk-shell Co-N-C@GNP). The obtained catalyst exhibits prominent bifunctional electrocatalytic performance for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in the alkaline condition, in which the half-wave potential is 0.86 V for ORR, and the over-potential for OER is 0.42 V at 10 mA·cm−2. The rechargeable aqueous Zn-air battery fabricated with yolk-shell Co-N-C@GNP cathode deliveries an open circuit voltage (OCV) of 1.60 V, a peak power density of 236.2 mW·cm−2, and excellent cycling stability over 94 h at 5 mA·cm−2. The quasi-solid-state Zn-air battery (ZAB) using yolk-shell Co-N-C@GNP displays a high OCV of 1.40 V and a small voltage gap of 0.88 V in continuous cycling tests at 2 mA·cm−2. This work provides a valuable thought to focus attention on the design of high-efficient bifunctional catalysts with hierarchical porous yolk-shell framework and high-density metal active sites for metal-air battery technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, X. Y.; Lai, L. F.; Lin, J. Y.; Shen, Z. X. Recent advances in air electrodes for Zn-air batteries: Electrocatalysis and structural design. Mater. Horiz.2017, 4, 945–976.

    CAS  Google Scholar 

  2. Li, C. S.; Sun, Y.; Gebert, F.; Chou, S. L. Current progress on rechargeable magnesium-air battery. Adv. Energy Mater.2017, 7, 1700869.

    Google Scholar 

  3. Zhang, Y. G.; Deng, Y. P.; Wang, J. Y.; Jiang, Y.; Cui, G. L.; Shui, L. L.; Yu, A. P.; Wang, X.; Chen, Z. W. Recent progress on flexible Zn-air batteries. Energy Storage Mater.2021, 35, 538–549.

    Google Scholar 

  4. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; ** atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal.2022, 5, 300–310.

    CAS  Google Scholar 

  5. Yi, S. J.; Jiang, H.; Bao, X. J.; Zou, S. Q.; Liao, J. J.; Zhang, Z. J. Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. J. Electroanal. Chem.2019, 848, 113279.

    CAS  Google Scholar 

  6. Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res.2022, 55, 1892–1900.

    Google Scholar 

  7. Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc.2014, 136, 11027–11033.

    CAS  Google Scholar 

  8. Ai, K. L.; Li, Z. L.; Cui, X. Q. Scalable preparation of sized-controlled Co-N-C electrocatalyst for efficient oxygen reduction reaction. J. Power Sources2017, 368, 46–56.

    CAS  Google Scholar 

  9. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed.2022, 61, e202115219.

    CAS  Google Scholar 

  10. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed.2022, 61, e202213318.

    CAS  Google Scholar 

  11. Lin, Q. P.; Bu, X. H.; Kong, A. G.; Mao, C. Y.; Bu, F.; Feng, P. Y. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts. Adv. Mater.2015, 27, 3431–3436.

    CAS  Google Scholar 

  12. Lu, G. L.; Zhu, Y. L.; Xu, K. L.; **, Y. H.; Ren, Z. J.; Liu, Z. N.; Zhang, W. Metallated porphyrin based porous organic polymers as efficient electrocatalysts. Nanoscale2015, 7, 18271–18277.

    CAS  Google Scholar 

  13. Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science2009, 324, 71–74.

    CAS  Google Scholar 

  14. Yang, L.; Cheng, D. J.; Xu, H. X.; Zeng, X. F.; Wan, X.; Shui, J. L.; **ang, Z. H.; Cao, D. P. Unveiling the high-activity origin of singleatom iron catalysts for oxygen reduction reaction. Proc. Natl. Acad. Sci. USA2018, 115, 6626–6631.

    CAS  Google Scholar 

  15. Liu, Q. T.; Liu, X. F.; Zheng, L. R.; Shui, J. L. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells. Angew. Chem., Int. Ed.2018, 57, 1204–1208.

    CAS  Google Scholar 

  16. Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc.2016, 138, 3570–3578.

    CAS  Google Scholar 

  17. Ju, Y. W.; Yoo, S.; Kim, C.; Kim, S.; Jeon, I. Y.; Shin, J.; Baek, J. B.; Kim, G. Fe@N-graphene nanoplatelet-embedded carbon nanofibers as efficient electrocatalysts for oxygen reduction reaction. Adv. Sci.2016, 3, 1500205.

    Google Scholar 

  18. Li, J. K.; Ghoshal, S.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C. R.; Yuan, X. X. et al. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ. Sci.2016, 9, 2418–2432.

    CAS  Google Scholar 

  19. Guo, J. N.; Lin, C. Y.; **a, Z. H.; **ang, Z. H. A pyrolysis-free covalent organic polymer for oxygen reduction. Angew. Chem., Int. Ed.2018, 57, 12567–12572.

    CAS  Google Scholar 

  20. Tang, H. L.; Cai, S. C.; **e, S. L.; Wang, Z. B.; Tong, Y. X.; Pan, M.; Lu, X. H. Metal-organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells. Adv. Sci.2016, 3, 1500265.

    Google Scholar 

  21. Shen, K.; Chen, X. D.; Chen, J. Y.; Li, Y. W. Development of MOF-derived carbon-based nanomaterials for efficient catalysis. ACS Catal.2016, 6, 5887–5903.

    CAS  Google Scholar 

  22. Liu, T.; Zhao, P. P.; Hua, X.; Luo, W.; Chen, S. L.; Cheng, G. Z. An Fe-N-C hybrid electrocatalyst derived from a bimetal-organic framework for efficient oxygen reduction. J. Mater. Chem. A2016, 4, 11357–11364.

    CAS  Google Scholar 

  23. Peera, S. G.; Balamurugan, J.; Kim, N. H.; Lee, J. H. Sustainable synthesis of Co@NC core shell nanostructures from metal organic frameworks via mechanochemical coordination self-assembly: An efficient electrocatalyst for oxygen reduction reaction. Small2018, 14, e1800441.

    Google Scholar 

  24. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed.2016, 55, 10800–10805.

    CAS  Google Scholar 

  25. Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc.2017, 139, 17281–17284.

    CAS  Google Scholar 

  26. Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed.2021, 60, 19262–19271.

    CAS  Google Scholar 

  27. **g, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater.2022, 1, 100013.

    Google Scholar 

  28. Gadipelli, S.; Zhao, T. T.; Shevlin, S. A.; Guo, Z. X. Switching effective oxygen reduction and evolution performance by controlled graphitization of a cobalt-nitrogen-carbon framework system. Energy Environ. Sci.2016, 9, 1661–1667.

    CAS  Google Scholar 

  29. Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal conversion of core-shell metal-organic frameworks: A new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc.2015, 137, 1572–1580.

    CAS  Google Scholar 

  30. Chen, H. R.; Shen, K.; Mao, Q.; Chen, J. Y.; Li, Y. W. Nanoreactor of MOF-derived yolk-shell Co@C-N: Precisely controllable structure and enhanced catalytic activity. ACS Catal.2018, 5, 1417–1426.

    Google Scholar 

  31. Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc.2018, 140, 2610–2618.

    CAS  Google Scholar 

  32. Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev.2015, 115, 4823–4892.

    CAS  Google Scholar 

  33. Shi, Q.; Chen, Z. F.; Song, Z. W.; Li, J. P.; Dong, J. X. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem., Int. Ed.2011, 50, 672–675.

    CAS  Google Scholar 

  34. Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc.2018, 140, 1812–1823.

    CAS  Google Scholar 

  35. Casiraghi, C.; Ferrari, A. C.; Robertson, J. Raman spectroscopy of hydrogenated amorphous carbons. Phys. Rev. B2005, 72, 085401.

    Google Scholar 

  36. Li, S. D.; Zhuang, Z. C.; **a, L. X.; Zhu, J. X.; Liu, Z. A.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater.2023, 66, 160–168.

    CAS  Google Scholar 

  37. Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter2021, 4, 3161–3194.

    CAS  Google Scholar 

  38. Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Ríos, E.; Berry, F. J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study. J. Solid State Chem.2000, 153, 74–81.

    CAS  Google Scholar 

  39. Wang, X. W.; **, X. A.; Huo, G.; Xu, C. Y.; Sui, P.; Feng, R. F.; Fu, X. Z.; Luo, J. L. Co- and N-doped carbon nanotubes with hierarchical pores derived from metal-organic nanotubes for oxygen reduction reaction. J. Energy Chem.2021, 53, 49–55.

    Google Scholar 

  40. Wang, A. S.; Zhao, C. N.; Yu, M.; Wang, W. C. Trifunctional Co nanoparticle confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime. Appl. Catal. B: Environ.2021, 281, 119514.

    CAS  Google Scholar 

  41. Choudhury, T.; Saied, S. O.; Sullivan, J. L.; Abbot, A. M. Reduction of oxides of iron, cobalt, titanium and niobium by low-energy ion bombardment. J. Phys. D: Appl. Phys.1989, 22, 1185–1195.

    CAS  Google Scholar 

  42. Liu, M. H.; Xu, Q.; Miao, Q. Y.; Yang, S.; Wu, P.; Liu, G. J.; He, J.; Yu, C. B.; Zeng, G. F. Atomic Co-N4 and Co nanoparticles confined in COF@ZIF-67 derived core-shell carbon frameworks: Bifunctional non-precious metal catalysts toward the ORR and HER. J. Mater. Chem. A2022, 10, 228–233.

    Google Scholar 

  43. Li, H. X.; Wen, Y. L.; Jiang, M.; Yao, Y.; Zhou, H. H.; Huang, Z. Y.; Li, J. W.; Jiao, S. Q.; Kuang, Y. F.; Luo, S. L. Understanding of neighboring Fe-N4-C and Co-N4-C dual active centers for oxygen reduction reaction. Adv. Funct. Mater.2021, 31, 2011289.

    CAS  Google Scholar 

  44. Sakaushi, K.; Eckardt, M.; Lyalin, A.; Taketsugu, T.; Behm, R. J.; Uosaki, K. Microscopic electrode processes in the four-electron oxygen reduction on highly active carbon-based electrocatalysts. ACS Catal.2018, 8, 8162–8176.

    CAS  Google Scholar 

  45. **ng, T.; Zheng, Y.; Li, L. H.; Cowie, B. C. C.; Gunzelmann, D.; Qiao, S. Z.; Huang, S. M.; Chen, Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene. ACS Nano2014, 8, 6856–6862.

    CAS  Google Scholar 

  46. Liu, Y. S.; Chen, Z. C.; Li, Z. X.; Zhao, N.; **e, Y. L.; Du, Y.; Xuan, J. N.; **ong, D. B.; Zhou, J. Q.; Cai, L. et al. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy2022, 99, 107325.

    CAS  Google Scholar 

  47. Bao, X. B.; Gong, Y. T.; Deng, J.; Wang, S. P.; Wang, Y. Organic-acid-assisted synthesis of a 3D lasagna-like Fe-N-doped CNTs-G framework: An efficient and stable electrocatalyst for oxygen reduction reactions. Nano Res.2017, 10, 1258–1267.

    CAS  Google Scholar 

  48. Shao, Q.; Li, Y.; Cui, X.; Li, T. J.; Wang, H. G.; Li, Y. H.; Duan, Q.; Si, Z. J. Metallophthalocyanine-based polymer-derived Co2P nanoparticles anchoring on doped graphene as high-efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. ACS Sustainable Chem. Eng.2020, 8, 6422–6432.

    CAS  Google Scholar 

  49. Ma, Y.; Li, J. T.; Liao, X. B.; Luo, W.; Huang, W. Z.; Meng, J. S.; Chen, Q.; **, S. B.; Yu, R. H.; Zhao, Y. et al. Heterostructure design in bimetallic phthalocyanine boosts oxygen reduction reaction activity and durability. Adv. Funct. Mater.2020, 30, 2005000.

    CAS  Google Scholar 

  50. Yi, J. D.; Xu, R.; Chai, G. L.; Zhang, T.; Zang, K. T.; Nan, B.; Lin, H.; Liang, Y. L.; Lv, J. Q.; Luo, J. et al. Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A2019, 7, 1252–1259.

    CAS  Google Scholar 

  51. Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater.2018, 30, 1803220.

    Google Scholar 

  52. Wang, Y. Q.; Yu, B. Y.; Liu, K.; Yang, X. T.; Liu, M.; Chan, T. S.; Qiu, X. Q.; Li, J.; Li, W. Z. Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal-air batteries. J. Mater. Chem. A2020, 8, 2131–2139.

    CAS  Google Scholar 

  53. Liu, M.; Li, N.; Cao, S. F.; Wang, X. M.; Lu, X. Q.; Kong, L. J.; Xu, Y. H.; Bu, X. H. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater.2022, 34, e2107421.

    Google Scholar 

  54. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; **a, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed.2023, 62, e202212653.

    CAS  Google Scholar 

  55. Zhuang, Z. C.; **a, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; **a, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p-n junction rectification. Angew. Chem.2023, 135, e202212335.

    Google Scholar 

  56. Zhang, X.; Truong-Phuoc, L.; Liao, X. M.; Tuci, G.; Fonda, E.; Papaefthymiou, V.; Zafeiratos, S.; Giambastiani, G.; Pronkin, S.; Pham-Huu, C. An open gate for high-density metal ions in N-doped carbon networks: Powering Fe-N-C catalyst efficiency in the oxygen reduction reaction. ACS Catal.2021, 11, 8915–8928.

    CAS  Google Scholar 

  57. Zhong, H. X.; Ly, K. H.; Wang, M. C.; Krupskaya, Y.; Han, X. C.; Zhang, J. C.; Zhang, J.; Kataev, V.; Büchner, B.; Weidinger, I. M. et al. A phthalocyanine-based layered two-dimensional conjugated metal-organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed.2019, 58, 10677–10682.

    CAS  Google Scholar 

  58. Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc.2011, 133, 5587–5593.

    CAS  Google Scholar 

  59. Jiang, M.; Yang, J.; Ju, J.; Zhang, W.; He, L.; Zhang, J.; Fu, C. P.; Sun, B. D. Space-confined synthesis of CoNi nanoalloy in N-doped porous carbon frameworks as efficient oxygen reduction catalyst for neutral and alkaline aluminum-air batteries. Energy Storage Mater.2020, 27, 96–108.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 22008058 and 52074119), the Joint Funds of National Natural Science Foundation of China (No. U20A20280), the program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province (No. T2021010), the Joint supported by Hubei Provincial Natural Science Foundation and Huangshi of China (No. 2022CFD039), the Postgraduate Innovative Research Project of Hubei Normal University (Nos. 20220512 and 20220552), and College Students innovation and entrepreneurship training program of Hubei Province (No. S202210513055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yisi Liu, Yahui Yang or Yue Du.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, Z., Wang, S. et al. Hierarchical porous yolk-shell Co-N-C nanocatalysts encaged ingraphene nanopockets for high-performance Zn-air battery. Nano Res. 16, 8893–8901 (2023). https://doi.org/10.1007/s12274-023-5593-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5593-2

Keywords

Navigation