Log in

Yolk–shell FeCu/NC electrocatalyst boosting high-performance zinc-air battery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Iron–nitrogen–carbon single-atom catalysts (Fe–N–C SACs) are widely acknowledged for their effective oxygen reduction activity, however, their activity requires further enhancement. Meanwhile, additional structural optimization is necessary to enhance mass transport and achieve higher power density in practical applications. Herein, using ZIF-8 as a template, we synthesized yolk–shell catalysts featuring complex sites of Fe single atoms and Cu nanoclusters (y-FeCu/NC) via partial etching and liquid-phase loading. The synthesized y-FeCu/NC catalyst exhibits high specific surface area and mesoporous volume. Combined with the advantages of highly active sites and yolk–shell structure, the y-FeCu/NC catalyst demonstrated outstanding catalytic performance in the oxygen reduction reaction, achieving a half-wave potential (E1/2) of 0.97 V in 0.1 M KOH. As a practical energy device, Zn-air battery (ZAB) assembled with y-FeCu/NC catalyst achieved a remarkable power density of 356.3 mW·cm−2, representing an improvement of approximately 28.5% compared to its solid FeCu/NC counterpart. Furthermore, it showcased impressive stability, surpassing all control samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, J.; Zhang, X. D.; Fan, E. S.; Chen, R. J.; Wu, F.; Li, L. Carbon neutrality strategies for sustainable batteries: From structure, recycling, and properties to applications. Energy Environ. Sci. 2023, 16, 745–791.

    Article  Google Scholar 

  2. Wang, S.; Chu, Y. Y.; Lan, C.; Liu, C. P.; Ge, J. J.; **ng, W. Metal-nitrogen-carbon catalysts towards acidic ORR in PEMFC: Fundamentals, durability challenges, and improvement strategies. Chem. Synth. 2023, 3, 15.

    Article  Google Scholar 

  3. Mu, X. Q.; Zhang, X. Y.; Chen, Z. Y.; Gao, Y.; Yu, M.; Chen, D.; Pan, H. Z.; Liu, S. L.; Wang, D. S.; Mu, S. C. Constructing symmetry-mismatched RuxFe3−xO4 heterointerface-supported Ru clusters for efficient hydrogen evolution and oxidation reactions. Nano Lett. 2024, 24, 1015–1023.

    Article  CAS  PubMed  Google Scholar 

  4. Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; Zhuang, Z. C.; Chen, D.; Liao, Y. R.; Zhao, H. Y.; Mu, S. C.; Wang, D. S.; Dai, Z. H. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the Volmer step of alkaline hydrogen oxidation. Angew. Chem., Int. Ed. 2024, 63, e202319618.

    Article  CAS  Google Scholar 

  5. Guo, Y. Y.; Cao, Y. H.; Lu, J. D.; Zheng, X. R.; Deng, Y. D. The concept, structure, and progress of seawater metal-air batteries. Microstructures 2023, 3, 2023038.

    Article  CAS  Google Scholar 

  6. Wang, Q. C.; Kaushik, S.; **ao, X.; Xu, Q. Sustainable zinc-air battery chemistry: Advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139–6190.

    Article  CAS  PubMed  Google Scholar 

  7. **ao, X.; Zhao, H.; Li, L. F.; Qu, B. L.; Wu, Y. L.; Zhu, Y. L.; Chen, B. B.; Pan, G. Ion exchange coupled biomineral self-sacrificial template synthesis of N-enriched porous carbon as robust electrocatalyst for rechargeable Zn-air battery. Rare Met. 2023, 42, 1186–1194.

    Article  CAS  Google Scholar 

  8. Li, L.; Li, N.; **a, J. W.; **ng, H. R.; Arif, M.; Zhao, Y. T.; He, G. Y.; Chen, H. Q. Post- synthetic electrostatic adsorption-assisted fabrication of efficient single-atom Fe-N-C oxygen reduction catalysts for Zn-air batteries. Sci. China Mater. 2023, 66, 992–1001.

    Article  CAS  Google Scholar 

  9. Wang, T. T.; Huang, J. C.; Sang, W.; Zhou, C.; Zhang, B. H.; Zhu, W.; Du, K.; Kou, Z. K.; Wang, S. X. Correlative Mn-Co catalyst excels Pt in oxygen reduction reaction of quasi-solid-state zinc-air batteries. Nano Res. 2024, 17, 4118–4124.

    Article  CAS  Google Scholar 

  10. **ao, F.; Wang, Q.; Xu, G. L.; Qin, X. P.; Hwang, I.; Sun, C. J.; Liu, M.; Hua, W.; Wu, H. W.; Zhu, S. Q. et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 503–512.

    Article  CAS  Google Scholar 

  11. Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; **, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

    Article  Google Scholar 

  12. Wang, Y.; Wang, L.; Fu, H. G. Research progress of Fe-N-C catalysts for the electrocatalytic oxygen reduction reaction. Sci. China Mater. 2022, 65, 1701–1722.

    Article  CAS  Google Scholar 

  13. Zhao, Y. L.; Tian, Z. B.; Wang, W. Q.; Deng, X. H.; Tseng, J. C.; Wang, G. H. Size-dependent activity of Fe-N-doped mesoporous carbon nanoparticles towards oxygen reduction reaction. Green Carbon, in press, DOI: https://doi.org/10.1016/j.greenca.2024.03.002.

  14. Shi, Q. R.; Hwang, S.; Yang, H. P.; Ismail, F.; Su, D.; Higgins, D.; Wu, G. Supported and coordinated single metal site electrocatalysts. Mater. Today 2020, 37, 93–111.

    Article  CAS  Google Scholar 

  15. Shu, X. X.; Tan, D. X.; Wang, Y. Q.; Ma, J. Z.; Zhang, J. T. Bimetal-bridging nitrogen coordination in carbon-based electrocatalysts for pH - universal oxygen reduction. Angew. Chem., Int. Ed. 2024, 136, e202316005.

    Article  Google Scholar 

  16. Zhao, J. Y.; Li, P.; Fan, K. C.; Wei, W. J.; Lu, F. H.; Zhao, H. M.; Li, B.; Zong, L. B.; Wang, L. Spatial confinement of zeolitic imidazolate framework deposits by porous carbon nanospheres for dual-atom catalyst towards high-performance oxygen reduction reaction. Nano Res. 2023, 16, 11464–11472.

    Article  CAS  Google Scholar 

  17. Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

    Article  CAS  Google Scholar 

  18. Wu, Y. J.; Wu, X. H.; Tu, T. X.; Zhang, P. F.; Li, J. T.; Zhou, Y.; Huang, L.; Sun, S. G. Controlled synthesis of FeNx-CoNx dual active sites interfaced with metallic Co nanoparticles as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Appl. Catal. B Environ. 2020, 278, 119259.

    Article  CAS  Google Scholar 

  19. Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

    Article  CAS  Google Scholar 

  20. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, 2003300.

    Article  CAS  Google Scholar 

  21. Yang, J.; Wang, Z. Y.; Huang, C. X.; Zhang, Y. D.; Zhang, Q. H.; Chen, C.; Du, J. Y.; Zhou, X.; Zhang, Y.; Zhou, H. et al. Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 22722–22728.

    Article  CAS  Google Scholar 

  22. Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Y. F.; Liu, L. S.; Li, Y. X.; Mu, X. Q.; Mu, S. C.; Liu, S. L.; Dai, Z. H. Strong synergy between physical and chemical properties: Insight into optimization of atomically dispersed oxygen reduction catalysts. J. Energy Chem. 2024, 91, 36–49.

    Article  CAS  Google Scholar 

  24. Zhang, K. X.; Zhang, Y. L.; Zhang, Q. H.; Liang, Z. B.; Gu, L.; Guo, W. H.; Zhu, B. J.; Guo, S. J.; Zou, R. Q. Metal-organic framework-derived Fe/Cu-substituted Co nanoparticles embedded in CNTs-grafted carbon polyhedron for Zn-air batteries. Carbon Energy 2020, 2, 283–293.

    Article  CAS  Google Scholar 

  25. Zhang, T. Y.; Han, X.; Yang, H. B.; Han, A. J.; Hu, E. Y.; Li, Y. P.; Yang, X. Q.; Wang, L.; Liu, J. F.; Liu, B. Atomically dispersed nickel(I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 12055–12061.

    Article  CAS  Google Scholar 

  26. Gan, T.; Wang, D. S. Atomically dispersed materials: Ideal catalysts in atomic era. Nano Res. 2024, 17, 18–38.

    Article  CAS  Google Scholar 

  27. Liang, C.; Han, X.; Zhang, T. Y.; Dong, B.; Li, Y. P.; Zhuang, Z. B.; Han, A. J.; Liu, J. F. Cu nanoclusters accelerate the rate-determining step of oxygen reduction on Fe-N-C in all pH range. Adv. Energy Mater. 2024, 14, 2303935.

    Article  CAS  Google Scholar 

  28. Lu, X. Y.; Xu, H.; Yang, P. X.; **ao, L. H.; Li, Y. Q.; Ma, J. Y.; Li, R. P.; Liu, L. L.; Liu, A. M.; Kondratiev, V. et al. Zinc-assisted MgO template synthesis of porous carbon-supported Fe-Nx. sites for efficient oxygen reduction reaction catalysis in Zn-air batteries. Appl. Catal. B Environ. 2022, 313, 121454.

    Article  CAS  Google Scholar 

  29. Zhang, P.; Chen, H. C.; Zhu, H. Y.; Chen, K.; Li, T. Y.; Zhao, Y. L.; Li, J. Y.; Hu, R. B.; Huang, S. Y.; Zhu, W. et al. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction. Nat. Commun. 2024, 15, 2062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, Z.; Liu, X. R.; Liu, X. Z.; Huang, S.; Liu, Y.; Yao, Z. C.; Zhang, Y.; Zhang, Q. H.; Gu, L.; Zheng, L. R. et al. Interfacial assembly of binary atomic metal-N. sites for high-performance energy devices. Nat. Commun. 2023, 14, 1822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Adabi, H.; Shakouri, A.; Ul Hassan, N.; Varcoe, J. R.; Zulevi, B.; Serov, A.; Regalbuto, J. R.; Mustain, W. E. High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 2021, 6, 834–843.

    Article  CAS  Google Scholar 

  32. Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; **ng, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.

    Article  CAS  Google Scholar 

  33. Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J. W.; Caruso, F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 2016, 26, 5827–5834.

    Article  CAS  Google Scholar 

  34. Han, X.; Zhang, T. Y.; Wang, X. H.; Zhang, Z. D.; Li, Y. P.; Qin, Y. J.; Wang, B. Q.; Han, A. J.; Liu, J. F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules. Nat. Commun. 2022, 13, 2900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ejima, H.; Richardson, J. J.; Liang, K.; Best, J. P.; Van Koeverden, M. P.; Such, G. K.; Cui, J. W.; Caruso, F. One- step assembly of coordination complexes for versatile film and particle engineering. Science 2013, 341, 154–157.

    Article  CAS  PubMed  Google Scholar 

  36. Li, J. C.; **ao, F.; Zhong, H.; Li, T.; Xu, M. J.; Ma, L.; Cheng, M.; Liu, D.; Feng, S.; Shi, Q. R. et al. Secondary-atom-assisted synthesis of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction. ACS Catal. 2019, 9, 5929–5934.

    Article  CAS  Google Scholar 

  37. Rahman, M. M.; Muttakin, M.; Pal, A.; Shafiullah, A. Z.; Saha, B. B. A statistical approach to determine optimal models for IUPAC-classified adsorption isotherms. Energies 2019, 12, 4565.

    Article  CAS  Google Scholar 

  38. Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; Zhang, J. L.; Cui, F. H.; Li, W. H.; Wang, D. S. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem., Int. Ed. 2024, 63, e202315032.

    Article  CAS  Google Scholar 

  39. Zhong, G. Y.; Xu, S. R.; Liu, L.; Zheng, C. Z.; Dou, J. J.; Wang, F. Y.; Fu, X. B.; Liao, W. B.; Wang, H. J. Effect of experimental operations on the limiting current density of oxygen reduction reaction evaluated by rotating-disk electrode. CeemElectroChem 2020, 7, 1107–1114.

    Article  CAS  Google Scholar 

  40. Ku, Y. P.; Ehelebe, K.; Hutzler, A.; Bierling, M.; Böhm, T.; Zitolo, A.; Vorokhta, M.; Bibent, N.; Speck, F. D.; Seeberger, D. et al. Oxygen reduction reaction in alkaline media causes iron leaching from Fe-N-C electrocatalysts. J. Am. Chem. Soc. 2022, 144, 9753–9763.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, T. Y.; Wang, F. P.; Yang, C.; Han, X.; Liang, C.; Zhang, Z. D.; Li, Y. P.; Han, A. J.; Liu, J. F.; Liu, B. Boosting ORR performance by single atomic divacancy Zn-N3C-C8 sites on ultrathin N-doped carbon nanosheets. Chem Catal 2022, 2, 836–852.

    Article  CAS  Google Scholar 

  42. Chen, G. B.; Liu, P.; Liao, Z. Q.; Sun, F. F.; He, Y. H.; Zhong, H. X.; Zhang, T.; Zschech, E.; Chen, M. W.; Wu, G. et al. Zinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater. 2020, 32, 1907399.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2022YFC2105900). The authors thank the Shanghai Synchrotron Radiation Facility (SSRF) for XAS measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zenghui Qiu, Haijun Xu or Junfeng Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Zhang, T., Sun, S. et al. Yolk–shell FeCu/NC electrocatalyst boosting high-performance zinc-air battery. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6766-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6766-3

Keywords

Navigation