Log in

Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott—Schottky heterojunction for efficient electromagnetic wave absorption

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Integrating heterogeneous interface through nanostructure design and interfacial modification is essential to realize strengthened interfacial polarization relaxation in electromagnetic wave absorption. However, an in-depth comprehension of the interfacial polarization behavior at hetero-junction/interface is highly desired but remains a great challenge. Herein, a Mott—Schottky heterojunction consisting of honeycomb-like porous N-doped carbon confined CoP nanoparticles (CoP@HNC) is designed to elevate the interfacial polarization strength. Simultaneously, corresponding electron migration and redistribution between the heterointerface of defective carbon and CoP nanoparticles are revealed. The significant difference in the work function on both sides of heterogeneous interface boosts the interfacial polarization in high frequency region. Furthermore, the relevant spectroscopic characterizations demonstrate that electron spontaneously migrates from CoP to N-doped carbon at the heterointerface, thereby contributing to the accumulation of electron on defective carbon side and the distribution of hole on CoP side. Impressively, benefitting from the synergistic effects of three-dimensional porous conductive carbon skeleton, foreign N heteroatoms, special CoP nanoparticles, and the resultant CoP/N-doped carbon Mott—Schottky heterojunction, the CoP@HNC exhibits remarkable electromagnetic wave absorption performances with minimum reflection loss up to −60.8 dB and the maximum effective absorption bandwidth of 4.96 GHz, which is superior to most of recently reported transition metal phosphides microwave absorbing composites. The present work opens a new avenue for designing heterogeneous interface to realize strengthened microwave absorption capability and also reveals the in-depth influence of interface structure on electromagnetic wave absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, Z. C.; Cheng, H. W.; **, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

    CAS  Google Scholar 

  2. Shu, J. C.; Cao, W. Q.; Cao, M. S. Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 2021, 31, 2100470.

    CAS  Google Scholar 

  3. Wei, Q. W.; Pei, S. F.; Qian, X. T.; Liu, H. P.; Liu, Z. B.; Zhang, W. M.; Zhou, T. Y.; Zhang, Z. C.; Zhang, X. F.; Cheng, H. M. et al. Super high electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv. Mater. 2020, 32, 1907411.

    CAS  Google Scholar 

  4. Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

    CAS  Google Scholar 

  5. Wang, L.; Li, X.; Li, Q. Q.; Yu, X. F.; Zhao, Y. H.; Zhang, J.; Wang, M.; Che, R. C. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 2019, 15, 1900900.

    Google Scholar 

  6. Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

    CAS  Google Scholar 

  7. Sun, X.; Pu, Y. H.; Wu, F.; He, J. Z.; Deng, G.; Song, Z. M.; Liu, X. F.; Shui, J. L.; Yu, R. H. 0D-1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption. Chem. Eng. J. 2021, 423, 130132.

    CAS  Google Scholar 

  8. Li, T.; Zhi, D. D.; Chen, Y.; Li, B.; Zhou, Z. W.; Meng, F. B. Multiaxial electrospun generation of hollow graphene aerogel spheres for broadband high-performance microwave absorption. Nano Res. 2020, 13, 477–484.

    CAS  Google Scholar 

  9. Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

    CAS  Google Scholar 

  10. Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600.

    CAS  Google Scholar 

  11. Lv, H. P.; Wu, C.; Tang, J.; Du, H. F.; Qin, F. X.; Peng, H. X.; Yan, M. Two-dimensional SnO/SnO2 heterojunctions for electromagnetic wave absorption. Chem. Eng. J. 2021, 411, 128445.

    CAS  Google Scholar 

  12. Wang, L.; Du, Z.; Bai, X. Y.; Lin, Y. Constructing macroporous C/Co composites with tunable interfacial polarization toward ultra-broadband microwave absorption. J. Colloid Interface Sci. 2021, 591, 76–84.

    CAS  Google Scholar 

  13. Liang, D.; Lian, C.; Xu, Q. C.; Liu, M. M.; Liu, H. L.; Jiang, H.; Li, C. Z. Interfacial charge polarization in Co2P2O7@N, P co-doped carbon nanocages as Mott-Schottky electrocatalysts for accelerating oxygen evolution reaction. Appl. Catal. B Environ. 2020, 268, 118417.

    CAS  Google Scholar 

  14. Wu, Z. C.; **, C.; Yang, Z. Q.; Che, R. C. Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance. Carbon 2022, 189, 530–538.

    CAS  Google Scholar 

  15. Ding, J. J.; Wang, L.; Zhao, Y. H.; **ng, L. S.; Yu, X. F.; Chen, G. Y.; Zhang, J.; Che, R. C. Boosted interfacial polarization from multishell TiO2@Fe3O4@PPy heterojunction for enhanced microwave absorption. Small 2019, 15, 1902885.

    Google Scholar 

  16. Zhao, Z. H.; Kou, K. C.; Zhang, L. M.; Wu, H. J. Optimal particle distribution induced interfacial polarization in bouquet-like hierarchical composites for electromagnetic wave absorption. Carbon 2022, 186, 323–332.

    CAS  Google Scholar 

  17. Liang, L. L.; Song, G.; Liu, Z.; Chen, J. P.; **e, L. J.; Jia, H.; Kong, Q. Q.; Sun, G. H.; Chen, C. M. Constructing Ni12P5/Ni2P heterostructures to boost interfacial polarization for enhanced microwave absorption performance. ACS Appl. Mater. Interfaces 2020, 12, 52208–52220.

    CAS  Google Scholar 

  18. Huang, W. H.; Gao, W. M.; Zuo, S. W.; Zhang, L. X.; Pei, K.; Liu, P. B.; Che, R. C.; Zhang, H. B. Hollow MoC/NC sphere for electromagnetic wave attenuation: Direct observation of interfacial polarization on nanoscale hetero-interfaces. J. Mater. Chem. A 2022, 10, 1290–1298.

    CAS  Google Scholar 

  19. Li, Z. H.; Xu, B. G.; Han, J.; Huang, J. X.; Chung, K. Y. Interfacial polarization and dual charge transfer induced high permittivity of carbon dots-based composite as humidity-resistant tribomaterial for efficient biomechanical energy harvesting. Adv. Energy Mater. 2021, 11, 2101294.

    CAS  Google Scholar 

  20. Yang, H. Q.; Wang, B. D.; Kou, S. Q.; Lu, G. L.; Liu, Z. N. Mottschottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery. Chem. Eng. J. 2021, 425, 131589.

    CAS  Google Scholar 

  21. Sun, Y. K.; Liu, T.; Li, Z. J.; Meng, A. L.; Li, G. C.; Wang, L.; Li, S. X. Morphology and interfacial charge regulation strategies constructing 3D flower-like Co@CoP2 heterostructure electrocatalyst for efficient overall water splitting. Chem. Eng. J. 2022, 433, 133684.

    CAS  Google Scholar 

  22. Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; **e, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

    CAS  Google Scholar 

  23. Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientationtunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

    CAS  Google Scholar 

  24. Li, Y.; Liu, X. F.; Nie, X. Y.; Yang, W. W.; Wang, Y. D.; Yu, R. H.; Shui, J. L. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv. Funct. Mater. 2019, 29, 1807624.

    Google Scholar 

  25. Huang, W. H.; Zhang, X. X.; Zhao, Y. N.; Zhang, J.; Liu, P. B. Hollow N-doped carbon polyhedra embedded Co and Mo2C nanoparticles for high-efficiency and wideband microwave absorption. Carbon 2020, 167, 19–30.

    CAS  Google Scholar 

  26. Quan, B.; Liang, X. H.; Ji, G. B.; Zhang, Y. N.; Xu, G. Y.; Du, Y. W. Cross-linking-derived synthesis of porous CoxNiy/C nanocomposites for excellent electromagnetic behaviors. ACS Appl. Mater. Interfaces 2017, 9, 38814–38823.

    CAS  Google Scholar 

  27. Chen, T.; Guo, S. Q.; Yang, J.; Xu, Y. D.; Sun, J.; Wei, D. L.; Chen, Z. X.; Zhao, B.; Ding, W. P. Nitrogen-doped carbon activated in situ by embedded nickel through the Mott—Schottky effect for the oxygen reduction reaction. ChemPhysChem 2017, 18, 3454–3461.

    CAS  Google Scholar 

  28. Sun, Z. H.; Wang, Y. K.; Zhang, L. B.; Wu, H.; **, Y. C.; Li, Y. H.; Shi, Y. C.; Zhu, T. X.; Mao, H.; Liu, J. M. et al. Simultaneously realizing rapid electron transfer and mass transport in jellyfish-like Mott-Schottky nanoreactors for oxygen reduction reaction. Adv. Funct. Mater. 2020, 30, 1910482.

    CAS  Google Scholar 

  29. Wu, Z. C.; Pei, K.; **ng, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.

    Google Scholar 

  30. **ong, Y.; Xu, L. L.; Yang, C. X.; Sun, Q. F.; Xu, X. J. Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. J. Mater. Chem. A 2020, 8, 18863–18871.

    CAS  Google Scholar 

  31. Huang, M. Q.; Wang, L.; Pei, K.; You, W. B.; Yu, X. F.; Wu, Z. C.; Che, R. C. Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 2020, 16, 2000158.

    CAS  Google Scholar 

  32. Liu, P. B.; Gao, S.; Wang, Y.; Huang, Y.; He, W. J.; Huang, W. H.; Luo, J. H. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 2020, 381, 122653.

    CAS  Google Scholar 

  33. Li, M. H.; Zhu, W. J.; Li, X.; Xu, H. L.; Fan, X. M.; Wu, H. J.; Ye, F.; Xue, J. M.; Li, X. Q.; Cheng, L. F. et al. Ti3C2Tx/MoS2 self-rolling rod-based foam boosts interfacial polarization for electromagnetic wave absorption. Adv. Sci. 2022, 9, 2201118.

    CAS  Google Scholar 

  34. Wang, H. Y.; Jiao, Y. K.; Wang, S. J.; Ye, P. C.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Accelerating triple transport in zinc-air batteries and water electrolysis by spatially confining Co nanoparticles in breathable honeycomb-like macroporous N-doped carbon. Small 2021, 17, 2103517.

    CAS  Google Scholar 

  35. Pan, J. J.; Sun, X.; **, Z. Z.; Wang, T.; Zhao, Q. L.; Qu, H. J.; He, J. P. Constructing two-dimensional lamellar monometallic carbon nanocomposites by sodium chloride hard template for lightweight microwave scattering and absorption. Compos. Part. B Eng. 2022, 228, 109422.

    CAS  Google Scholar 

  36. Liu, S. H.; Wang, Z. Y.; Zhou, S.; Yu, F. J.; Yu, M. Z.; Chiang, C. Y.; Zhou, W. Z.; Zhao, J. J.; Qiu, J. S. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 2017, 29, 1700874.

    Google Scholar 

  37. Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y. Q. et al. Core—shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

    CAS  Google Scholar 

  38. Zhu, C. Q.; Zhao, S. F.; Fan, Z. W.; Wu, H. D.; Liu, F. Q.; Chen, Z. X.; Li, A. M. Confinement of CoP nanoparticles in nitrogen-doped yolk-shell porous carbon polyhedron for ultrafast catalytic oxidation. Adv. Funct. Mater. 2020, 30, 2003947.

    CAS  Google Scholar 

  39. Zhang, C. L.; **e, Y.; Liu, J. T.; Cao, F. H.; Cong, H. P.; Li, H. 1D core-shell MOFs derived CoP nanoparticles-embedded N-doped porous carbon nanotubes anchored with MoS2 nanosheets as efficient bifunctional electrocatalysts. Chem. Eng. J. 2021, 419, 129977.

    CAS  Google Scholar 

  40. Hao, Y. R.; Xue, H.; Sun, J.; Guo, N. K.; Song, T. S.; Sun, J. W.; Wang, Q. Tuning the electronic structure of CoP embedded in N-doped porous carbon nanocubes via Ru do** for efficient hydrogen evolution. ACS Appl. Mater. Interfaces 2021, 13, 56035–56044.

    CAS  Google Scholar 

  41. Qian, X.; Zhang, Y. H.; Wu, Z. C.; Zhang, R. X.; Li, X. H.; Wang, M.; Che, R. C. Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance. Small 2021, 17, 2100283.

    CAS  Google Scholar 

  42. Zhao, H. H.; Xu, X. Z.; Wang, Y. H.; Fan, D. G.; Liu, D. W.; Lin, K. F.; Xu, P.; Han, X. J.; Du, Y. C. Heterogeneous interface induced the formation of hierarchically hollow carbon microcubes against electromagnetic pollution. Small 2020, 16, 2003407.

    CAS  Google Scholar 

  43. Wang, B. J.; Li, S. K.; Huang, F. Z.; Wang, S. P.; Zhang, H.; Liu, F. H.; Liu, Q. C. Construction of multiple electron transfer paths in 1D core-shell hetetrostructures with MXene as interlayer enabling efficient microwave absorption. Carbon 2022, 187, 56–66.

    CAS  Google Scholar 

  44. Huang, T.; Wu, Z. C.; Yu, Q.; Tan, D. G.; Li, L. Preparation of hierarchically porous carbon/magnetic particle composites with broad microwave absorption bandwidth. Chem. Eng. J. 2019, 359, 69–78.

    CAS  Google Scholar 

  45. Xu, J.; Shi, Y. N.; Zhang, X. C.; Yuan, H. R.; Li, B.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. General strategy for fabrication of N-doped carbon nanotube/reduced graphene oxide aerogels for dissipation and conversion of electromagnetic energy. J. Mater. Chem. C 2020, 8, 7847–7857.

    CAS  Google Scholar 

  46. Xu, J.; Zhang, X.; Yuan, H. R.; Zhang, S.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. N-doped reduced graphene oxide aerogels containing pod-like N-doped carbon nanotubes and FeNi nanoparticles for electromagnetic wave absorption. Carbon 2020, 159, 357–365.

    CAS  Google Scholar 

  47. Wu, F.; Yang, K.; Li, Q.; Shah, T.; Ahmad, M.; Zhang, Q. Y.; Zhang, B. L. Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption. Carbon 2021, 173, 918–931.

    CAS  Google Scholar 

  48. Wang, P.; Qi, J.; Li, C.; Li, W. P.; Wang, T. H.; Liang, C. H. Hierarchical CoNi2S4@NiMn-layered double hydroxide heterostructure nanoarrays on superhydrophilic carbon cloth for enhanced overall water splitting. Electrochim. Acta 2020, 345, 136247.

    CAS  Google Scholar 

  49. Wei, Y.; Liu, H. J.; Liu, S. C.; Zhang, M. M.; Shi, Y. P.; Zhang, J. W.; Zhang, L.; Gong, C. H. Waste cotton-derived magnetic porous carbon for high-efficiency microwave absorption. Compos. Commun. 2018, 9, 70–75.

    Google Scholar 

  50. Zhang, C.; Wu, Z. C.; Xu, C. Y.; Yang, B. T.; Wang, L.; You, W. B.; Che, R. C. Hierarchical Ti3C2Tx MXene/carbon nanotubes hollow microsphere with confined magnetic nanospheres for broadband microwave absorption. Small 2022, 18, 2104380.

    CAS  Google Scholar 

  51. Wang, S. J.; Li, D. S.; Zhou, Y.; Jiang, L. Hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures on cotton fabric for durable self-cleaning and enhanced microwave absorption. ACS Nano 2020, 14, 8634–8645.

    CAS  Google Scholar 

  52. Zhang, X.; Liu, Z. C.; Deng, B. W.; Cai, L.; Dong, Y. Y.; Zhu, X. J.; Lu, W. Honeycomb-like NiCo2O4@MnO2 nanosheets array/3D porous expanded graphite hybrids for high-performance microwave absorber with hydrophobic and flame-retardant functions. Chem. Eng. J. 2021, 419, 129547.

    CAS  Google Scholar 

  53. Gao, Z. G.; Lan, D.; Zhang, L. M.; Wu, H. J. Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2106677.

    CAS  Google Scholar 

  54. Liu, D. W.; Du, Y. C.; Wang, F. Y.; Wang, Y. H.; Cui, L. R.; Zhao, H. H.; Han, X. J. MOFs-derived multi-chamber carbon microspheres with enhanced microwave absorption. Carbon 2020, 157, 478–485.

    CAS  Google Scholar 

  55. Yang, K.; Cui, Y. H.; Wan, L. Y.; Zhang, Q. Y.; Zhang, B. L. MOF-derived magnetic-dielectric balanced Co@ZnO@ N-doped carbon composite materials for strong microwave absorption. Carbon 2022, 190, 366–375.

    CAS  Google Scholar 

  56. Cao, M. S.; Wang, X. X.; Cao, W. Q.; Fang, X. Y.; Wen, B.; Yuan, J. Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 2018, 1800987.

    Google Scholar 

  57. Xu, Z. X.; **, S.; Seo, M. H.; Wang, X. L. Hierarchical Ni-Mo2C/N-doped carbon Mott-Schottky array for water electrolysis. Appl. Catal. B Environ. 2021, 292, 120168.

    CAS  Google Scholar 

  58. Huang, Y.; Yan, H. T.; Zhang, C. Y.; Wang, Y. Z.; Wei, Q. H.; Zhang, R. K. Interfacial electronic effects in Co@N-doped carbon shells heterojunction catalyst for semi-hydrogenation of phenylacetylene. Nanomaterials 2021, 11, 2776.

    CAS  Google Scholar 

  59. Xu, X. F.; Shi, S. H.; Tang, Y. L.; Wang, G. Z.; Zhou, M. F.; Zhao, G. Q.; Zhou, X. C.; Lin, S. W.; Meng, F. B. Growth of NiAl-layered double hydroxide on graphene toward excellent anticorrosive microwave absorption application. Adv. Sci. 2021, 8, 2002658.

    CAS  Google Scholar 

  60. Xu, Z. J.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Huo, Y.; Kang, Y. F.; Wang, R. L.; Xu, R.; Peng, H. et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Res. 2021, 14, 738–746.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51872002 and 52172174), Open Project of Provincial and Ministerial Scientific Research Platform, and Fuyang Normal University (No. FSKFKT009D). The authors acknowledge the support from Joint Laboratory of Electromagnetic Material Structure Design and Advanced Stealth Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fenghua Liu, Shikuo Li or Hui Zhang.

Electronic Supplementary Material

12274_2022_4779_MOESM1_ESM.pdf

Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott—Schottky heterojunction for efficient electromagnetic wave absorption

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Huang, F., Wu, H. et al. Enhanced interfacial polarization of defective porous carbon confined CoP nanoparticles forming Mott—Schottky heterojunction for efficient electromagnetic wave absorption. Nano Res. 16, 4160–4169 (2023). https://doi.org/10.1007/s12274-022-4779-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4779-3

Keywords

Navigation