Log in

Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrolysis of water is widely used for hydrogen isotope separation and the development of hydrogen evolution reaction (HER) catalysts with high selectivity and activity is of key importance. Herein, we propose single atom catalysts (SACs) as promising catalysts for efficient hydrogen isotope separation. Pt SACs and Pt nanoparticles (NPs) have been fabricated on nanoarray-structured nitrogen-doped graphite foil (NGF) substrate by a polyol reduction method. The as prepared Pt1/NGF electrode exhibits high activity and selectivity toward HER with a low overpotential of 0.022 V at 10 mA·cm−2 and a high separation factor of 6.83 for hydrogen and deuterium separation, much better than Pt NPs counterpart. Density functional theory (DFT) calculations ascribe the high activity and selectivity to the constructed Pt-N2C2 structure. This work develops a new opportunity for the design and application of high-efficiency and stable SACs toward hydrogen isotope separation by electrolysis of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J. Y.; Oh, H.; Moon, H. R. Hydrogen isotope separation in confined nanospaces: Carbons, zeolites, metal-organic frameworks, and covalent organic frameworks. Adv. Mater. 2019, 31, 1805293.

    Article  Google Scholar 

  2. Glugla, M.; Lässer, R.; Dörr, L.; Murdoch, D. K.; Haange, R.; Yoshida, H. The inner deuterium/tritium fuel cycle of ITER. Fusion Eng. Des. 2003, 69, 39–43.

    Article  CAS  Google Scholar 

  3. Perez-Carbajo, J.; Parra, J. B.; Ania, C. O.; Merkling, P. J.; Calero, S. Molecular sieves for the separation of hydrogen isotopes. ACS Appl. Mater. Interfaces 2019, 11, 18833–18840.

    Article  CAS  Google Scholar 

  4. Lozada-Hidalgo, M. Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K. Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pum**. Nat. Commun. 2017, 8, 15215.

    Article  CAS  Google Scholar 

  5. Muhammad, R.; Jee, S.; Jung, M.; Park, J.; Kang, S. G.; Choi, K. M.; Oh, H. Exploiting the specific isotope-selective adsorption of metal-organic framework for hydrogen isotope separation. J. Am. Chem. Soc. 2021, 143, 8232–8236.

    Article  CAS  Google Scholar 

  6. Si, Y. N.; He, X.; Jiang, J.; Duan, Z. M.; Wang, W. J.; Yuan, D. Q. Highly effective H2/D2 separation in a stable Cu-based metal-organic framework. Nano Res. 2021, 14, 518–525.

    Article  CAS  Google Scholar 

  7. Ogawa, R.; Tanii, R.; Dawson, R.; Matsushima, H.; Ueda, M. Deuterium isotope separation by combined electrolysis fuel cell. Energy 2018, 149, 98–104.

    Article  CAS  Google Scholar 

  8. Harada, K.; Tanii, R.; Matsushima, H.; Ueda, M.; Sato, K.; Haneda, T. Effects of water transport on deuterium isotope separation during polymer electrolyte membrane water electrolysis. Int. J. Hydrogen Energy 2020, 45, 31389–31395.

    Article  CAS  Google Scholar 

  9. Krishtalik, L. I. Kinetic isotope effect in the hydrogen evolution reaction. Electrochim. Acta 2001, 46, 2949–2960.

    Article  CAS  Google Scholar 

  10. Minamimoto, H.; Osaka, R.; Murakoshi, K. In-situ observation of isotopic hydrogen evolution reactions using electrochemical mass spectroscopy to evaluate surface morphological effect. Electrochim. Acta 2019, 304, 87–93.

    Article  CAS  Google Scholar 

  11. Pozio, A.; Tosti, S. Isotope effects H/D in a PEFC with Pt-Ru/anode at low and high current density. Int. J. Hydrogen Energy 2019, 44, 7544–7554.

    Article  CAS  Google Scholar 

  12. Rebollar, L.; Intikhab, S.; Snyder, J. D.; Tang M. H. Kinetic isotope effects quantify pH-sensitive water dynamics at the Pt electrode interface. J. Phys. Chem. Lett. 2020, 11, 2308–2313.

    Article  CAS  Google Scholar 

  13. Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  Google Scholar 

  14. Li, X. N.; Yang, X. F.; Huang, Y. Q.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.

    Article  CAS  Google Scholar 

  15. Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2022, 15, 38–70.

    Article  CAS  Google Scholar 

  16. Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

    Article  CAS  Google Scholar 

  17. Zhang, F. F.; Zhu, Y. L.; Lin, Q.; Zhang, L.; Zhang, X. W.; Wang, H. T. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009.

    Article  CAS  Google Scholar 

  18. Wang, Y.; Huang, X.; Wei, Z. D. Recent developments in the use of single-atom catalysts for water splitting. Chin. J. Catal. 2021, 42, 1269–1286.

    Article  CAS  Google Scholar 

  19. Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

    Article  CAS  Google Scholar 

  20. Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

    Article  CAS  Google Scholar 

  21. Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

    Article  CAS  Google Scholar 

  22. Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

    Article  CAS  Google Scholar 

  23. Lu, B. Z.; Liu, Q. M.; Chen, S. W. Electrocatalysis of single-atom sites: Impacts of atomic coordination. ACS Catal. 2020, 10, 7584–7618.

    Article  CAS  Google Scholar 

  24. Guo, W. X.; Wang, Z. Y.; Wang, X. Q.; Wu, Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, 2004287.

    Article  CAS  Google Scholar 

  25. Liu, D. B.; He, Q.; Ding, S. Q.; Song, L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis. Adv. Energy Mater. 2020, 10, 2001482.

    Article  CAS  Google Scholar 

  26. **g, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004.

  27. Gan, T.; He, Q.; Zhang, H.; **ao, H. J.; Liu, Y. F.; Zhang, Y.; He, X. H.; Ji, H. B. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 2020, 389, 124490.

    Article  CAS  Google Scholar 

  28. Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.

    Article  CAS  Google Scholar 

  29. Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  30. Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhang, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

    Article  CAS  Google Scholar 

  31. Yuan, W. Y.; Ma, Y. Y.; Wu, H.; Cheng, L. F. Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. J. Energy Chem. 2022, 65, 254–279.

    Article  CAS  Google Scholar 

  32. Wang, X. Y.; Sang, X. H.; Dong, C. L.; Yao, S. Y.; Shuai, L.; Lu, J. G.; Yang, B.; Li, Z. J.; Lei, L. C.; Qiu, M. et al. Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites. Angew. Chem., Int. Ed. 2021, 60, 11959–11965.

    Article  CAS  Google Scholar 

  33. Xu, Y.; Chu, M. Y.; Liu, F. F.; Wang, X. C.; Liu, Y.; Cao, M. H.; Gong, J.; Luo, J.; Lin, H. P.; Li, Y. Y. et al. Revealing the correlation between catalytic selectivity and the local coordination environment of Pt single atom. Nano Lett. 2020, 20, 6865–6872.

    Article  CAS  Google Scholar 

  34. Shan, J. J.; Liu, J. L.; Li, M. W.; Lustig, S.; Lee, S. Flytzani-Stephanopoulos, M. NiCu single atom alloys catalyze the C-H bond activation in the selective non-oxidative ethanol dehydrogenation reaction. Appl. Catal. B: Environ. 2018, 226, 534–543.

    Article  CAS  Google Scholar 

  35. Xu, J. S.; Li, R.; Qian, X. J.; Ba, J. W., Wu, Q. W.; Luo, W. H.; Meng, D. Q. Nanoarray-structured nitrogen-doped graphite foil as the support of NiFe layered double hydroxides for enhancing oxygen evolution reaction. J. Power Sources 2020, 469, 228419.

    Article  CAS  Google Scholar 

  36. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.:Condens. Matter 2002, 14, 2717–2744.

    CAS  Google Scholar 

  37. White, J. A.; Bird, D. M. Implementation of gradient-corrected exchange-correlation potentials in Car-parrinello total-energy calculations. Phys. Rev. B 1994, 50, 4954–4957.

    Article  CAS  Google Scholar 

  38. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895.

    Article  CAS  Google Scholar 

  39. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  CAS  Google Scholar 

  40. Dou, S.; Tao, L.; Wang, R. L.; El Hankari, S.; Chen, R.; Wang, S. Y. Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv. Mater. 2018, 30, 1705850.

    Article  Google Scholar 

  41. Xu, J. S.; Li, R.; Xu, C. Q.; Zeng, R. G.; Jiang, Z.; Mei, B. B.; Li, J.; Meng, D. Q.; Chen, J. Underpotential-deposition synthesis and inline electrochemical analysis of single-atom copper electrocatalysts. Appl. Catal. B: Environ. 2021, 298, 120028.

    Article  Google Scholar 

  42. Xu, J. S.; Li, R.; Zeng, R. G.; Yan, X. Y.; Zhao, Q. K.; Ba, J. W.; Luo, W. H.; Meng, D. Q. Platinum single atoms supported on nanoarray-structured nitrogen-doped graphite foil with enhanced catalytic performance for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 38106–38112.

    Article  CAS  Google Scholar 

  43. Ouyang, B.; Zhang, Y. Q.; Wang, Y.; Zhang, Z.; Fan, H. J.; Rawat, R. S. Plasma surface functionalization induces nanostructuring and nitrogen-do** in carbon cloth with enhanced energy storage performance. J. Mater. Chem. A 2016, 4, 17801–17808.

    Article  CAS  Google Scholar 

  44. Li, T. F.; Liu, J. J.; Song, Y.; Wang, F. Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catal. 2018, 8, 8450–8458.

    Article  CAS  Google Scholar 

  45. Cho, S. J.; Ouyang, J. Y. Attachment of platinum nanoparticles to substrates by coating and polyol reduction of a platinum precursor. J. Phys. Chem. C 2011, 115, 8519–8526.

    Article  CAS  Google Scholar 

  46. Li, R.; Xu, J. S.; Zhao, Q. K.; Ren, W. S.; Zeng, R. G.; Pan, Q. F.; Yan, X. Y.; Ba, J. W.; Tang, T.; Luo, W. H. Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms. Nano Res., in press, https://doi.org/10.1007/s12274-021-3767-3.

  47. Zhong, W. W.; Tu, W. G.; Wang, Z. P.; Lin, Z. P.; Xu, A. J.; Ye, X. F.; Chen, D. C.; **ao, B. B. Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution. J. Energy Chem. 2020, 51, 280–284.

    Article  Google Scholar 

  48. Li, C.; Chen, Z.; Yi, H.; Cao, Y.; Du, L.; Hu, Y. D.; Kong, F. P.; Campen, R. K.; Gao, Y. Z.; Du, C. Y. et al. Polyvinylpyrrolidone-coordinated single-site platinum catalyst exhibits high activity for hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 15902–15907.

    Article  CAS  Google Scholar 

  49. Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; **a, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 2021, 33, 2008599.

    Article  CAS  Google Scholar 

  50. Ye, S. H.; Luo, F. Y.; Zhang, Q. L.; Zhang, P. Y.; Xu, T. T.; Wang, Q.; He, D. S.; Guo, L. C.; Zhang, Y.; He, C. X. et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 1000–1007.

    Article  CAS  Google Scholar 

  51. Li, J.; Zhou, Y. N.; Tang, W. J.; Zhen, J.; Gao, X. P.; Wang, N.; Chen, X.; Wei, M.; **ao, X.; Chu, W. Cold-plasma technique enabled supported Pt single atoms with tunable coordination for hydrogen evolution reaction. Appl. Catal. B: Environ. 2021, 285, 119861.

    Article  CAS  Google Scholar 

  52. Wang, Z. Y.; Yang, J.; Gan, J.; Chen, W. X.; Zhou, F. Y.; Zhou, X.; Yu, Z. Q.; Zhu, J. F.; Duan, X. Z.; Wu, Y. Electrochemical conversion of bulk platinum into platinum single-atom sites for the hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 10755–10760.

    Article  CAS  Google Scholar 

  53. Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; **ong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

    Article  CAS  Google Scholar 

  54. Wang, Y. W.; Qiu, W. J.; Song, E. H.; Gu, F.; Zheng, Z. H.; Zhao, X. L.; Zhao, Y. Q.; Liu, J. J.; Zhang, W. Q. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. Natl. Sci. Rev. 2018, 5, 327–341.

    Article  CAS  Google Scholar 

  55. Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

    Article  CAS  Google Scholar 

  56. Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    Article  CAS  Google Scholar 

  57. Nørskov, J. K.; Abild-Pedersen, F.; Studt, F.; Bligaard, T. Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. USA 2011, 108, 937–943.

    Article  Google Scholar 

  58. Shi, Y.; Ma, Z. R.; **ao, Y. Y.; Yin, Y. C.; Huang, W. M.; Huang, Z. C.; Zheng, Y. Z.; Mu, F. Y.; Huang, R.; Shi, G. Y. et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22109146) and Institute of Materials CAEP (Nos. TP03201703, TP03201802, CX2019018, and WDZC202105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **n **ang or Daqiao Meng.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Li, R., Yan, X. et al. Platinum single atom catalysts for hydrogen isotope separation during hydrogen evolution reaction. Nano Res. 15, 3952–3958 (2022). https://doi.org/10.1007/s12274-022-4075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4075-2

Keywords

Navigation