Log in

High-entropy oxide-supported platinum nanoparticles for efficient hydrogen evolution reaction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-entropy oxides (HEOs) are a new class of single-phase structures with unique electronic and catalytic properties; therefore, it is worthwhile to explore their applications in electrocatalysis. In this study, a Pt/(FeCoNiCrAl)3O4 nanohybrid using HEO as a support was developed as an efficient catalyst for the hydrogen evolution reaction (HER). Pt/(FeCoNiCrAl)3O4 exhibited high HER activity with a low overpotential of 22 mV at 10 mA·cm−2, outperforming other binary, ternary, and quaternary supports. The HER activity of Pt/(FeCoNiCrAl)3O4 was higher than that of a commercial Pt/C with a significantly lower Pt loading. The catalyst exhibited good activity and long-term stability (60 h) in an electrolytic water-splitting device. This good activity can be attributed to the fact that the introduction of Pt effectively facilitates electronic interactions between Pt and the HEO. In addition, the HEO substrate was more favorable for dispersing Pt particles, optimizing the electrochemical specific surface area, and significantly reducing the charge resistance of the HER. This study extends the application of HEOs in electrocatalysis and demonstrates the promising prospects of HEOs as supports for electrocatalysts.

Graphical abstract

摘要

高熵氧化物(HEO)是一类具有独特电子结构和催化性能的新型材料, 其在电催化方面的应用值得深入探索。本工作以HEO为载体, 制备了Pt/(FeCoNiCrAl)3O4纳米复合材料作为高效析氢催化剂。Pt/(FeCoNiCrAl)3O4展现高HER活性, 在10 mA·cm−2时过电位低至22 mV, 优于其他基于二元至四元氧化物载体的复合材料。此外, Pt/(FeCoNiCrAl)3O4的HER活性也优于商业Pt/C, 但Pt负载量远低于商业Pt/C。该催化剂在电解水装置中具有较好的活性和长时间的稳定性(60 h)。Pt/(FeCoNiCrAl)3O4良好的HER活性可以归因于Pt与HEO载体之间存在电子相互作用, 同时HEO载体有助于实现Pt纳米颗粒的均匀分散并提升电化学比表面积, 还可优化HER过程中的电子转移。以上结果表明HEO在电催化领域的良好前景, 并进一步展示了HEOs作为电催化剂载体的应用潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Da YM, Li XP, Zhong C, Deng YD, Han XP, Hu WB. Advanced characterization techniques for identifying the key active sites of gas-involved electrocatalysts. Adv Funct Mater. 2020;30(35):2001704. https://doi.org/10.1002/adfm.202001704.

    Article  CAS  Google Scholar 

  2. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294. https://doi.org/10.1038/nature11475.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Wang JJ, Li XP, Cui BF, Zhang Z, Hu XF, Ding J, Deng YD, Han XP, Hu WB. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 2021;40(11):3019. https://doi.org/10.1007/s12598-021-01736-x.

    Article  CAS  Google Scholar 

  4. Zhou GZ, Liu GS, Liu XB, Yu QP, Mao HM, **ao ZY, Wang L. 1D/3D heterogeneous assembling body as trifunctional electrocatalysts enabling zinc-air battery and self-powered overall water splitting. Adv Funct Mater. 2021;32(4):2107608. https://doi.org/10.1002/adfm.202107608.

    Article  CAS  Google Scholar 

  5. Roger I, Shipman MA, Symes MD. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem. 2017;1(1):0003. https://doi.org/10.1038/s41570-016-0003.

    Article  CAS  Google Scholar 

  6. Wang YX, Zhong SB, Sun FC. Research progress in vehicular high mass density solid hydrogen storage materials. Chinese Journal of Rare Metals. 2022; 46 (6): 796. https://doi.org/10.13373/j.cnki.cjrm.XY21120007.

  7. Li CQ, Baek JB. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega. 2020;5(1):31. https://doi.org/10.1021/acsomega.9b03550.

    Article  CAS  PubMed  Google Scholar 

  8. Choi P, Bessarabov DG, Datta R. A simple model for solid polymer electrolyte (SPE) water electrolysis. Solid State Ion. 2004;175(1–4):535. https://doi.org/10.1016/j.ssi.2004.01.076.

    Article  CAS  Google Scholar 

  9. Trasatti S. Water electrolysis: who first? J Electroanal Chem. 1999;476(1):90. https://doi.org/10.1016/S0022-0728(99)00364-2.

    Article  CAS  Google Scholar 

  10. Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK. Hydrogen production, storage, transportation and key challenges with applications: a review, Energy Convers. Manag. 2018;165(1):602. https://doi.org/10.1016/j.enconman.2018.03.088.

    Article  CAS  Google Scholar 

  11. Zhou F, Zhou Y, Liu GG, Wang CT, Wang J. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Met. 2021;40(12):3375. https://doi.org/10.1007/s12598-021-01735-y.

    Article  CAS  Google Scholar 

  12. Zhu J, Hu LS, Zhao PX, Lee LYS, Wong KY. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev. 2020;120(2):851. https://doi.org/10.1021/acs.chemrev.9b00248.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou BH, Gao RJ, Zou JJ, Yang HM. Surface design strategy of catalysts for water electrolysis. Small. 2022;18(27):e2202336. https://doi.org/10.1002/smll.202202336.

    Article  CAS  PubMed  Google Scholar 

  14. Gao YX, Zheng DB, Li QC, **ao WP, Ma TY, Fu YL, Wu ZX, Wang L. 3D Co3O4-RuO2 hollow spheres with abundant interfaces as advanced trifunctional electrocatalyst for water-splitting and flexible Zn–Air battery. Adv Funct Mater. 2022;32(38):2203206. https://doi.org/10.1002/adfm.202203206.

    Article  CAS  Google Scholar 

  15. Shen P, Zhou BW, Chen Z, **ao WP, Fu YL, Wan J, Wu ZX, Wang L. Ruthenium-doped 3D Cu2O nanochains as efficient electrocatalyst towards hydrogen evolution and hydrazine oxidation. Appl Catal B. 2023;2023(325):122305. https://doi.org/10.1016/j.apcatb.2022.122305.

    Article  CAS  Google Scholar 

  16. Li HY, Tang QW, He BL, Yang PZ. Robust electrocatalysts from an alloyed Pt–Ru–M (M = Cr, Fe Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting. J Mater Chem A. 2016;4(17):6513. https://doi.org/10.1039/C6TA00785F.

    Article  CAS  Google Scholar 

  17. Lang XW, Qadeer MA, Shen GQ, Zhang RR, Yang SC, An JY, Pan L, Zou JJ. A Co–Mo2N composite on a nitrogen-doped carbon matrix with hydrogen evolution activity comparable to that of Pt/C in alkaline media. J Mater Chem A. 2019;7(36):20579. https://doi.org/10.1039/C9TA07749A.

    Article  CAS  Google Scholar 

  18. Kelly TG, Lee KX, Chen JG. Pt-modified molybdenum carbide for the hydrogen evolution reaction: from model surfaces to powder electrocatalysts. J Power Sources. 2014;271(20):76. https://doi.org/10.1016/j.jpowsour.2014.07.179.

    Article  CAS  Google Scholar 

  19. Shi F, Wu WZ, Chen JF, Xu Q. Atomic-layered Pt clusters on S-vacancy rich MoS(2–x) with high electrocatalytic hydrogen evolution. Chem Commun. 2021;57(57):7011. https://doi.org/10.1039/D1CC02304G.

    Article  CAS  Google Scholar 

  20. Wu ZX, Yang PF, Li QC, **ao WP, Li ZJ, Xu GR, Liu FS, Jia B, Ma TY, Feng SH, Wang L. Microwave synthesis of pt clusters on black TiO2 with abundant oxygen vacancies for efficient acidic electrocatalytic hydrogen evolution. Angew Chem Int Ed. 2023;62(14): e202300406. https://doi.org/10.1002/anie.202300406.

    Article  CAS  Google Scholar 

  21. Yu WL, Chen Z, Fu YL, **ao WP, Dong B, Chai YM, Wu ZX, Wang L. Superb all-ph hydrogen evolution performances powered by ultralow Pt-decorated hierarchical Ni-Mo porous microcolumns. Adv Funct Mater. 2022;33(4):2210855. https://doi.org/10.1002/adfm.202210855.

    Article  CAS  Google Scholar 

  22. Shi Y, Zhang D, Huang H, Miao HF, Wu XK, Zhao H, Zhan TR, Chen XL, Lai JP, Wang L. Mixture phases engineering of PtFe nanofoams for efficient hydrogen evolution. Small. 2022;18(11): e2106947. https://doi.org/10.1002/smll.202106947.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao GQ, **a LX, Cui PX, Qian YM, Jiang YZ, Zhao Y, Pan HG, Dou SX, Sun WP. Atomic-level modulation of the interface chemistry of platinum-nickel oxide toward enhanced hydrogen electrocatalysis kinetics. Nano Lett. 2021;21(11):4845. https://doi.org/10.1021/acs.nanolett.1c01519.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. An CH, Kang W, Deng QB, Hu N. Pt and Te codoped ultrathin MoS2 nanosheets for enhanced hydrogen evolution reaction with wide pH range. Rare Met. 2021;41(2):378. https://doi.org/10.1007/s12598-021-01791-4.

    Article  CAS  Google Scholar 

  25. Qiu Y, Wen ZL, Jiang CR, Wu XJ, Si R, Bao J, Zhang QH, Gu L, Tang JW, Guo XH. Rational design of atomic layers of Pt anchored on Mo2C nanorods for efficient hydrogen evolution over a wide ph range. Small. 2019;15(14): e1900014. https://doi.org/10.1002/smll.201900014.

    Article  CAS  PubMed  Google Scholar 

  26. Wang XZ, Zhao YH, Chen G, Zhao XP, Liu C, Sridar S, Pizano LFL, Li SK, Brozena AH, Guo M, Zhang HL, Wang YK, **ong W, Hu LB. Ultrahigh-temperature melt printing of multi-principal element alloys. Nat Commun. 2022;13(1):6724. https://doi.org/10.1038/s41467-022-34471-7.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Yao YG, Dong Q, Brozena A, Luo J, Miao JW, Chi MF, Wang C, Kevrekidis I G, Ren Z J, Greeley J, Wang GF, Anapolsky A, Hu LB. High-entropy nanoparticles: synthesis-structure-property relationships and data-driven discovery, Science 2022; 376 (6589): eabn3103. https://doi.org/10.1126/science.abn3103.

  28. Jia YJ, Chen HN, Liang XD. Microstructure and wear resistance of CoCrNbNiW high-entropy alloy coating prepared by laser melting deposition. Rare Met. 2019;38(12):1153. https://doi.org/10.1007/s12598-019-01342-y.

    Article  CAS  Google Scholar 

  29. Yeh JW. Alloy design strategies and future trends in high-entropy alloys. Jom. 2013;65(12):1759. https://doi.org/10.1007/s11837-013-0761-6.

    Article  CAS  Google Scholar 

  30. Sun YF, Dai S. High-entropy materials for catalysis: a new frontier, Sci. Adv. 2021; 7 (20): eabg1600. https://doi.org/10.1126/sciadv.abg1600.

  31. **n Y, Li SH, Qian YY, Zhu WK, Yuan HB, Jiang PY, Guo RH, Wang LB. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 2020;10(19):11280. https://doi.org/10.1021/acscatal.0c03617.

    Article  CAS  Google Scholar 

  32. Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 2013;61(13):4887. https://doi.org/10.1016/j.actamat.2013.04.058.

    Article  CAS  ADS  Google Scholar 

  33. Liu LH, Li N, Han M, Han JR, Liang HY. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution. Rare Met. 2021;41(1):125. https://doi.org/10.1007/s12598-021-01760-x.

    Article  CAS  Google Scholar 

  34. Ding ZY, Bian JJ, Shuang S, Liu XD, Hu YC, Sun CW, Yang Y. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv Sustain Syst. 2020;4(5):1900105. https://doi.org/10.1002/adsu.201900105.

    Article  CAS  Google Scholar 

  35. Batchelor TAA, Loffler T, **ao B, Krysiak OA, Strotkotter V, Pedersen JK, Clausen CM, Savan A, Li YJ, Schuhmann W, Rossmeisl J, Ludwig A. Complex-solid-solution electrocatalyst discovery by computational prediction and high-throughput experimentation. Angew Chem Int Ed. 2021;60(13):6932. https://doi.org/10.1002/anie.202014374.

    Article  CAS  Google Scholar 

  36. Chen YF, Zhan X, Bueno SLA, Shafei IH, Ashberry HM, Chatterjee K, Xu L, Tang YW, Skrabalak SE. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 2021;6(3):231. https://doi.org/10.1039/D0NH00656D.

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Rost CM, Sachet E, Borman T, Moballegh A, Dickey EC, Hou D, Jones JL, Curtarolo S, Maria JP. Entropy-stabilized oxides. Nature Commun. 2015;6(5):8485. https://doi.org/10.1038/ncomms9485.

    Article  CAS  ADS  Google Scholar 

  38. Sarkar A, Djenadic R, Usharani NJ, Sanghvi KP, Chakravadhanula VSK, Gandhi AS, Hahn H, Bhattacharya SS. Nanocrystalline multicomponent entropy stabilised transition metal oxides. J Eur Ceram Soc. 2017;37(2):747. https://doi.org/10.1016/j.jeurceramsoc.2016.09.018.

    Article  CAS  Google Scholar 

  39. Zhang Y, Dai WJ, Zhang PF, Lu T, Pan Y. In-situ electrochemical tuning of (CoNiMnZnFe)3O3.2 high-entropy oxide for efficient oxygen evolution reactions, J Alloy. Compd. 2021; 868 (5): 159064. https://doi.org/10.1016/j.jallcom.2021.159064.

  40. Nguyen TX, Liao YC, Lin CC, Su YH, Ting JM. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv Funct Mater. 2021;31(27):2101632. https://doi.org/10.1002/adfm.202101632.

    Article  CAS  Google Scholar 

  41. Su L, Chen X, Xu L, Eldred T, Smith J, DellaRova C, Wang HJ, Gao WP. Visualizing the formation of high-entropy fluorite oxides from an amorphous precursor at atomic resolution. ACS Nano. 2022;16(12):21397. https://doi.org/10.1021/acsnano.2c09760.

    Article  CAS  PubMed  Google Scholar 

  42. Li K, Xu J, Chen C, **e ZZ, Liu D, Qu DY, Tang HL, Wei Q, Deng QB, Li JS, Hu N. Activating the hydrogen evolution activity of Pt electrode via synergistic interaction with NiS2. J. Colloid Interface Sci. 2021; 582 (Part B): 591. https://doi.org/10.1016/j.jcis.2020.08.071.

  43. Yoo M, Yu YS, Ha H, Lee S, Choi JS, Oh S, Kang E, Choi H, An H, Lee KS, Park JY, Celestre R, Marcus MA, Nowrouzi K, Taube D, Shapiro DA, Jung W, Kim C, Kim HY. A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy Environ. Sci. 2020;13(4):1231. https://doi.org/10.1039/C9EE03492G.

    Article  CAS  Google Scholar 

  44. Zhang Y, Lu T, Ye YK, Dai WJ, Zhu YA, Pan Y. Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for co-prosperity of efficiency and stability in an oxygen evolution reaction, ACS Appl. Mater Interfaces. 2020;12(29):32548. https://doi.org/10.1021/acsami.0c05916.

    Article  CAS  Google Scholar 

  45. Liu BB, Hou JG, Zhang TT, Xu CX, Liu H. A three-dimensional multilevel nanoporous NiCoO2/Ni hybrid for highly reversible electrochemical energy storage. J Mater Chem A. 2019;7(27):16222. https://doi.org/10.1039/C9TA03324F.

    Article  CAS  Google Scholar 

  46. Gu KZ, Wang DD, **e C, Wang TH, Huang G, Liu YB, Zou YQ, Tao L, Wang SY. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew Chem Int Ed. 2021;60(37):20253. https://doi.org/10.1002/anie.202107390.

    Article  CAS  Google Scholar 

  47. Zhao SQ, Wu HY, Yin R, Wang XN, Zhong HZ, Fu Q, Wan WJ, Cheng T, Shi Y, Cai GX, Jiang CZ, Ren F. Preparation and electrocatalytic properties of (FeCrCoNiAl0.1)Ox high-entropy oxide and NiCo-(FeCrCoNiAl0.1)Ox heterojunction films, J Alloy Compd. 2021; 868 (5): 159108. https://doi.org/10.1016/j.jallcom.2021.159108.

  48. Shi WH, Liu HW, Li ZZ, Li CH, Zhou JH, Yuan YF, Jiang F, Fu K, Yao YG. High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis. SusMat. 2022;2(2):186. https://doi.org/10.1002/sus2.56.

    Article  CAS  Google Scholar 

  49. Tian ZL, Da YM, Wang M, Dou XY, Cui XH, Chen J, Jiang R, ** SB, Cui BH, Luo YN, Yang H, Long Y, **ao YK, Chen W. Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom Pt decorated defective TiO2. Nature Commun. 2023;14(1):142. https://doi.org/10.1038/s41467-023-35875-9.

    Article  CAS  ADS  Google Scholar 

  50. Li SY, Tang XW, Jia HL, Li HL, **e GQ, Liu XJ, Lin X, Qiu HJ. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J Catal. 2020;383:164. https://doi.org/10.1016/j.jcat.2020.01.024.

    Article  CAS  Google Scholar 

  51. Zhang LJ, Cai WW, Bao NZ, Yang H. Implanting an electron donor to enlarge the d-p hybridization of high-entropy (oxy)hydroxide: a novel design to boost oxygen evolution. Adv Mater. 2022;34(26):e2110511. https://doi.org/10.1002/adma.202110511.

    Article  CAS  PubMed  Google Scholar 

  52. ** ZY, Lyu J, Zhao YL, Li HL, Chen ZH, Lin X, **e GQ, Liu XJ, Kai JJ, Qiu HJ. Top–down synthesis of noble metal particles on high-entropy oxide supports for electrocatalysis. Chem Mater. 2021;33(5):1771. https://doi.org/10.1021/acs.chemmater.0c04695.

    Article  CAS  Google Scholar 

  53. Yue KH, Liu JL, Zhu YT, **a CF, Wang P, Zhang JW, Kong Y, Wang XY, Yan Y, **a BY. In situ ion-exchange preparation and topological transformation of trimetal–organic frameworks for efficient electrocatalytic water oxidation, Energy Environ. Sci. 2021;14(12):6546. https://doi.org/10.1039/D1EE02606B.

    Article  CAS  Google Scholar 

  54. Li HJW, Cai C, Wang QY, Chen SY, Fu JW, Liu B, Hu QN, Hu KM, Li HM, Hu JH, Liu QM, Chen SW, Liu M. High-performance alkaline water splitting by Ni nanoparticle-decorated Mo-Ni microrods: enhanced ion adsorption by the local electric field. Chem Eng J. 2022;435(1):134860. https://doi.org/10.1016/j.cej.2022.134860.

    Article  CAS  Google Scholar 

  55. Hu F, Yu DS, Ye M, Wang H, Hao YN, Wang LQ, Li LL, Han XP, Peng SJ. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe–O–Cu bridges. Adv Energy Mater. 2022;12(19):2200067. https://doi.org/10.1002/aenm.202200067.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52122107, 51972224 and 52001227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Jun Wang or **ao-Peng Han.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18991 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, MY., Wang, JJ., Zhao, J. et al. High-entropy oxide-supported platinum nanoparticles for efficient hydrogen evolution reaction. Rare Met. 43, 1537–1546 (2024). https://doi.org/10.1007/s12598-023-02553-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02553-0

Keywords

Navigation