Log in

Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

To solve the problem of high temperature or long reaction time in hydrothermal synthesis of carbon dots (CDs), a novel method based on the promoting carbonization by hydrochloric acid as catalysis was developed in present work. The acid catalyzed carbon dots (ACDs) were prepared facilely from tryptophan and phenylalanine at 200 °C for 2 h. In our findings, the acids could promote significantly the formation of the ACDs’ carbon core, as a result of the accelerating of the carbonization due to the easy deoxidation. The ACDs showed an average size of 4.8 nm, and consisted of high carbon crystalline core and various surface groups. The ACDs exhibited good optical properties and pH-dependent photoluminescence (PL) intensities. Furthermore, the ACDs were safe and biocompatible. The experimental results demonstrated that such new ACDs were connected with DNA-aptamer by EDC/NHS reaction maintaining both the bright fluorescence and recognizing ability on the cancer cells, which so could be served as an effective PL sensing platform. The resultant DNA-aptamer with ACDs (DNA-ACDs) could stick to human breast cancer cells (MCF-7) specifically, and exhibited high sensitivity and selectivity, indicating the potential applications in the cancer cells targeted imaging fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744–4822.

    Article  Google Scholar 

  2. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

    Article  Google Scholar 

  3. Zhu, A. W.; Qu, Q.; Shao, X. L.; Kong, B.; Tian, Y. Carbondot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew. Chem., Int. Ed. 2012, 124, 7297–7301.

    Article  Google Scholar 

  4. Zheng, M.; Liu, S.; Li, J.; Qu, D.; Zhao, H. F.; Guan, X. G.; Hu, X. L.; **e, Z. G.; **g, X. B.; Sun, Z. C. Integrating oxaliplatin with highly luminescent carbon dots: An unprecedented theranostic agent for personalized medicine. Adv. Mater. 2014, 26, 3554–3560.

    Article  Google Scholar 

  5. Ge, J. C.; Jia, Q. Y.; Liu, W. M.; Guo, L.; Liu, Q. Y.; Lan, M. H.; Zhang, H. Y.; Meng, X. M.; Wang, P. F. Redemissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice. Adv. Mater. 2015, 27, 4169–4177.

    Article  Google Scholar 

  6. Huang, S.; Wang, L. M.; Zhu, F. W.; Su, W.; Sheng, J. R.; Huang, C. S.; **ao, Q. A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv. 2015, 5, 44587–44597.

    Article  Google Scholar 

  7. Liu, C. J.; Zhang, P.; Zhai, X. Y.; Tian, F.; Li, W. C.; Yang, J. H.; Liu, Y.; Wang, H. B.; Wang, W.; Liu, W. G. Nanocarrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613.

    Article  Google Scholar 

  8. Huang, P.; Lin, J.; Wang, X. S.; Wang, Z.; Zhang, C. L.; He, M.; Wang, K.; Chen, F.; Li, Z. M.; Shen, G. X. et al. Light-triggered theranostics based on photosensitizerconjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5104–5110.

    Article  Google Scholar 

  9. Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots codoped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

    Article  Google Scholar 

  10. Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

    Article  Google Scholar 

  11. Tao, H. Q.; Yang, K.; Ma, Z.; Wan, J. M.; Zhang, Y. J.; Kang, Z. H.; Liu, Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small 2012, 8, 281–290.

    Article  Google Scholar 

  12. Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; **, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

    Article  Google Scholar 

  13. Algarra, M.; Pérez-Martín, M.; Cifuentes-Rueda, M.; Jiménez-Jiménez, J.; Esteves da Silva, J. C. G.; Bandosz, T. J.; Rodríguez-Castellón, E.; López Navarrete, J. T.; Casado, J. Carbon dots obtained using hydrothermal treatment of formaldehyde. Cell imaging in vitro. Nanoscale 2014, 6, 9071–9077.

    Google Scholar 

  14. Wang, C. X.; Xu, Z. Z.; Cheng, H.; Lin, H. H.; Humphrey, M. G.; Zhang, C. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature. Carbon 2015, 82, 87–95.

    Article  Google Scholar 

  15. Pei, S. P.; Zhang, J.; Gao, M. P.; Wu, D. Q.; Yang, Y. X.; Liu, R. L. A facile hydrothermal approach towards photoluminescent carbon dots from amino acids. J. Colloid Interf. Sci. 2015, 439, 129–133.

    Article  Google Scholar 

  16. Fan, R. J.; Sun, Q.; Zhang, L.; Zhang, Y.; Lu, A. H. Photoluminescent carbon dots directly derived from polyethylene glycol and their application for cellular imaging. Carbon 2014, 71, 87–93.

    Article  Google Scholar 

  17. Yang, S. T.; Wang, X.; Wang, H. F.; Lu, F. S.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J. H.; Liu, Y. F.; Chen, M. et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 2009, 113, 18110–18114.

    Article  Google Scholar 

  18. Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, (41), 5116–5118.

    Article  Google Scholar 

  19. Sun, B. Z.; Duan, L.; Peng, G. G.; Li, X. X.; Xu, A. H. Efficient production of glucose by microwave-assisted acid hydrolysis of cellulose hydrogel. Bioresource Technol. 2015, 192, 253–256.

    Article  Google Scholar 

  20. Wang, X. H.; Qu, K. G.; Xu, B. L.; Ren, J. S.; Qu, X. G. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J. Mater. Chem. 2011, 21, 2445–2450.

    Article  Google Scholar 

  21. Mazzier, D.; Favaro, M.; Agnoli, S.; Silvestrini, S.; Granozzi, G.; Maggini, M.; Moretto, A. Synthesis of luminescent 3D microstructures formed by carbon quantum dots and their self-assembly properties. Chem. Commun. 2014, 50, 6592–6595.

    Article  Google Scholar 

  22. Liu, B.; Yang, F. K.; Liu, G. Y.; Yang, X. L. Synthesis of CdS/SiO2/polymer tri-layer fluorescent nanospheres with functional polymer shells. Chin. J. Polym. Sci. 2012, 30, 359–369.

    Article  Google Scholar 

  23. Ding, H.; Du, F. Y.; Liu, P. C.; Chen, Z. J.; Shen, J. C. DNA–carbon dots function as fluorescent vehicles for drug delivery. ACS Appl. Mater. Inter. 2015, 7, 6889–6897.

    Article  Google Scholar 

  24. Cao, H. M.; Ye, D. X.; Zhao, Q. Q.; Luo, J.; Zhang, S.; Kong, J. L. A novel aptasensor based on MUC-1 conjugated CNSs for ultrasensitive detection of tumor cells. Analyst 2014, 139, 4917–4923.

    Article  Google Scholar 

  25. Wang, X.; Cao, L.; Yang, S. T.; Lu, F. S.; Meziani, M. J.; Tian, L. L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y. P. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 5310–5314.

    Article  Google Scholar 

  26. Jiang, J.; He, Y.; Li, S. Y.; Cui, H. Amino acids as the source for producing carbon nanodots: Microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem. Commun. 2012, 48, 9634–9636.

    Article  Google Scholar 

  27. Sun, D.; Ban, R.; Zhang, P. H.; Wu, G. H.; Zhang, J. R.; Zhu, J. J. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 2013, 64, 424–434.

    Article  Google Scholar 

  28. Qin, X. Y.; Lu, W. B.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Green, low-cost synthesis of photoluminescent carbon dots by hydrothermal treatment of willow bark and their application as an effective photocatalyst for fabricating Au nanoparticles-reduced graphene oxide nanocomposites for glucose detection. Catal. Sci. Technol. 2013, 3, 1027–1035.

    Article  Google Scholar 

  29. Liu, S.; Tian, J. Q.; Wang, L.; Zhang, Y. W.; Qin, X. Y.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 2012, 24, 2037–2041.

    Article  Google Scholar 

  30. Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    Article  Google Scholar 

  31. Li, X. M.; Zhang, S. L.; Kulinich, S. A.; Liu, Y. L.; Zeng, H. B. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci. Rep. 2014, 4, 4976.

    Google Scholar 

  32. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

    Article  Google Scholar 

  33. Ferreira, C. S. M.; Matthews, C. S.; Missailidis, S. DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol. 2006, 27, 289–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ang Zhou or Lina Zhang.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Fu, B., Zou, S. et al. Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Res. 9, 214–223 (2016). https://doi.org/10.1007/s12274-016-0992-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-0992-2

Keywords

Navigation