Log in

Phytases of Probiotic Bacteria: Characteristics and Beneficial Aspects

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Probiotics play a vital role in clinical applications for the treatment of diarrhea, obesity and urinary tract infections. Phytate, an anti-nutrient, chelates essential minerals that are vital for human health. In the past few decades, research reports emphasize extensively on phytate degradation in animals. There is a growing need for finding alternate strategies of phytate utilization in human, as they are unable to produce phytase. At this juncture, probiotics can be utilized for phytase production to combat mineral deficiency in humans. The main focus of this review is on improving phosphate bioavailability by employing two approaches: supplementation of (1) fermented food products that contain probiotics and (2) recombinant phytase producing bacteria. In addition, several factors influencing phytase activity such as bacterial viability, optimal pH, substrate concentration and specificity were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO and WHO (2002) Joint working group report, “Guidelines for the evaluation probiotics in food”

  2. Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191. doi:10.1631/jzus.B0710640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lei XG, Porres JM, Mullaney EJ, Brinch-Pedersen H (2007) Phytase: source, structure and application. In: Polaina J, MacCabe AP (eds) Industrial enzymes-structure, function and applications. Springer, Netherlands, pp 505–529

    Google Scholar 

  4. Shin S, Ha NC, Oh BC, Oh TK, Oh BH (2001) Enzyme mechanism and catalytic property of beta propeller phytase. Structure 9:851–858

    Article  CAS  PubMed  Google Scholar 

  5. Konietzny U, Greiner R (2004) Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Braz J Microbiol 35:11–18. doi:10.1590/S1517-83822004000100002

    Article  CAS  Google Scholar 

  6. Shewale RN, Sawale PD, Khedkar CD, Singh A (2014) Selection criteria for probiotics: a review. Int J Probiotics Prebiotics 9:17–22

    Google Scholar 

  7. Hudson LE, Anderson SE, Corbett AH, Lamb TJ (2017) Gleaning insights from fecal microbiota transplantation and probiotic studies for the rational design of combination microbial therapies. Clin Microbiol Rev 30:191–231. doi:10.1128/CMR.00049-16

    Article  PubMed  Google Scholar 

  8. Lee WJ, Lattimer LDN, Stephen S, Borum ML, Doman DB (2015) Fecal Microbiota Transplantation: a review of emerging indications beyond relapsing Clostridium difficile toxin colitis. Gastroenterol Hepatol 11:24–32

    Google Scholar 

  9. Baxter M, Colville A (2016) Adverse events in faecal microbiota transplant: a review of the literature. J Hosp Infect 92:112–127. doi:10.1016/j.jhin.2015.10.024

    Article  Google Scholar 

  10. Shimizu M (1992) Purification and characterization of phytase from Bacillus suhtilis (natto) N–77. Biosci Biotechnol Biochem 56:1266–1269. doi:10.1271/bbb.56.1266

    Article  CAS  Google Scholar 

  11. Hong SW, Chu IH, Chung KS (2011) Purification and biochemical characterization of thermostable phytase from newly isolated Bacillus subtilis CF92. J Korean Soc Appl Biol Chem 54:89–94. doi:10.3839/jksabc.2011.012

    Article  CAS  Google Scholar 

  12. Lee SH, Kwon HS, Koo KT, Kang BH, Kim TY (2006) Characterization of phytase from Bacillus coagulans IDCC 1201. Korean J Microbiol Biotechnol 34:28–34

    CAS  Google Scholar 

  13. De Angelis M (2003) Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. Int J Food Microbiol 87:259–270. doi:10.1016/S0168-1605(03)00072-2

    Article  PubMed  Google Scholar 

  14. Haros M, Bielecka M, Honke J, Sanz Y (2008) Phytate-degrading activity in lactic acid bacteria. Pol J Food Nutr Sci 58:33–40

    CAS  Google Scholar 

  15. Khodaii Z, Mehrabani Natanzi M, Naseri MH, Goudarzvand M, Dodson H, Snelling A (2013) Phytase activity of lactic acid bacteria isolated from dairy and pharmaceutical probiotic products. Int J Enterpathog 1:12–16. doi:10.17795/ijep9359

    Google Scholar 

  16. Adegbehingbe KT (2015) Effect of starter cultures on the anti-nutrient contents, minerals and viscosity of Ogwo, a fermented sorghum–Irish potato gruel. Int Food Res J 22:1247–1252

    CAS  Google Scholar 

  17. Urga K, Keshava N, Narasimha HV (1997) Effects of natural and mixed culture of lactobacilli fermentation on in vitro iron and zinc bioavailability in tef (Eragrostis tef) atmit. Bull Chem Soc Ethiop 11:101–109. doi:10.4314/bcse.v11i2.21018

    CAS  Google Scholar 

  18. Zamudio M, Gonzalez A, Medina J (2001) Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Lett Appl Microbiol 32:181–184

    Article  CAS  PubMed  Google Scholar 

  19. Fischer MM, Egli IM, Aeberli I, Hurrell RF, Meile L (2014) Phytic acid degrading lactic acid bacteria in tef-injera fermentation. Int J Food Microbiol 190:54–60. doi:10.1016/j.ijfoodmicro.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  20. Chettri R, Tamang JP (2014) Functional properties of Tungrymbai and Bekang, naturally fermented soybean foods of North East India. Int J Fermented Foods 3:87–103. doi:10.5958/2321-712X.2014.01311.8

    Article  Google Scholar 

  21. Abriouel H, Lucas R, Ben Omar N, Valdivia E, Maqueda M, Martínez-Cañamero M, Gálvez A (2005) Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Syst Appl Microbiol 28:383–397. doi:10.1016/j.syapm.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  22. Anastasio M, Pepe O, Cirillo T, Palomba S, Blaiotta G, Villani F (2010) Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation. J Food Sci 75:M28–M35. doi:10.1111/j.1750-3841.2009.01402.x

    Article  CAS  PubMed  Google Scholar 

  23. Reale A, Mannina L, Tremonte P, Sobolev AP, Succi M, Sorrentino E, Coppola R (2004) Phytate degradation by lactic acid bacteria and yeasts during the wholemeal dough fermentation: a 31 P NMR study. J Agric Food Chem 52:6300–6305. doi:10.1021/jf049551p

    Article  CAS  PubMed  Google Scholar 

  24. Tamang JP, Tamang B, Schillinger U, Guigas C, Holzapfel WH (2009) Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. Int J Food Microbiol 135:28–33. doi:10.1016/j.ijfoodmicro.2009.07.016

    Article  CAS  PubMed  Google Scholar 

  25. Sumengen M, Dincer S, Kaya A (2012) Phytase production from Lactobacillus brevis. Turk J Biol 36:533–541. doi:10.3906/biy-1111-2

    CAS  Google Scholar 

  26. Didar Z, Khodaparast MHH (2011) Effect of different lactic acid bacteria on phytic acid content and quality of whole wheat toast bread. JFBT 1:1–10

    Google Scholar 

  27. Pulido RP, Omar NB, Abriouel H, López RL, Cañamero MM, Guyot J, Gálvez A (2007) Characterization of lactobacilli isolated from caper berry fermentations. J Appl Microbiol 102:583–590. doi:10.1111/j.1365-2672.2006.03067.x

    Article  CAS  PubMed  Google Scholar 

  28. Lavilla-Lerma L, Pérez-Pulido R, Martínez-Bueno M, Maqueda M, Valdivia E (2013) Characterization of functional, safety, and gut survival related characteristics of Lactobacillus strains isolated from farmhouse goat’s milk cheeses. Int J Food Microbiol 163:136–145. doi:10.1016/j.ijfoodmicro.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  29. Roger T, Léopold TN, Funtong MCM (2015) Nutritional properties and antinutritional factors of corn paste (Kutukutu) fermented by different strains of lactic acid bacteria. Int J Food Sci. doi:10.1155/2015/502910

    PubMed  PubMed Central  Google Scholar 

  30. Chaoui A, Faid M, Belhcen R (2003) Effect of natural starters used for sourdough bread in Morocco on phytate biodegradation. East Mediterr Health J 9:141–147

    CAS  PubMed  Google Scholar 

  31. Papamanoli E, Tzanetakis N, Litopoulou-Tzanetaki E, Kotzekidou P (2003) Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties. Meat Sci 65:859–867. doi:10.1016/S0309-1740(02)00292-9

    Article  CAS  PubMed  Google Scholar 

  32. Najafi MA, Rezaei K, Safari M, Razavi SH (2012) Use of sourdough to reduce phytic acid and improve zinc bioavailability of a traditional flat bread (Sangak) from Iran. Food Sci Biotechnol 21:51–57. doi:10.1007/s10068-012-0007-3

    Article  CAS  Google Scholar 

  33. Sumengen M, Dincer S, Kaya A (2013) Production and characterization of phytase from Lactobacillus plantarum. Food Biotechnol 27:105–118. doi:10.1080/08905436.2013.781507

    Article  CAS  Google Scholar 

  34. Zotta T, Ricciardi A, Parente E (2007) Enzymatic activities of lactic acid bacteria isolated from Cornetto di Matera sourdoughs. Int J Food Microbiol 115:165–172. doi:10.1016/j.ijfoodmicro.2006.10.026

    Article  CAS  PubMed  Google Scholar 

  35. Cizeikiene D, Juodeikiene G, Bartkiene E, Damasius J, Paskevicius A (2015) Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread. Int J Food Sci Nutr 66:736–742. doi:10.3109/09637486.2015.1088939

    Article  CAS  PubMed  Google Scholar 

  36. Hayek SA, Shahbazi A, Worku M, Ibrahim SA (2014) Enzymatic activity of Lactobacillus grown in a sweet potato base medium. Br Microbiol Res J 4:509–522

    Article  Google Scholar 

  37. Magboul AA, McSweeney PL (1999) Purification and characterization of an acid phosphatase from Lactobacillus plantarum DPC2739. Food Chem 65:15–22

    Article  CAS  Google Scholar 

  38. Onipede GO, Banwo K, Ogunreni OR, Sanni A (2014) Influence of starter culture lactic acid bacteria on the phytic acid content of Sorghum-Ogi (an indigenous cereal gruel). Ann Food Sci Tech 15:121–134

    Google Scholar 

  39. Bawane R, Tantwai K, Rajput LPS, Kadam-Bedekar M, Kumar S, Gontia I, Tiwari S (2011) Molecular analysis of phytase gene cloned from Bacillus subtilis. Adv Stud Biol 3:103–110

    Google Scholar 

  40. García-Mantrana I, Monedero V, Haros M (2015) Reduction of phytate in soy drink by fermentation with Lactobacillus casei expressing phytases from Bifidobacteria. Plants Food Hum Nutr 70:269–274. doi:10.1007/s11130-015-0489-2

    Article  Google Scholar 

  41. Kumar V, Sangwan P, Verma AK, Agrawal S (2014) Molecular and biochemical characteristics of recombinant β-Propeller phytase from Bacillus licheniformis strain PB-13 with potential application in Aquafeed. Appl Biochem Biotechnol 173:646–659. doi:10.1007/s12010-014-0871-9

    Article  CAS  PubMed  Google Scholar 

  42. Wua T, Chen C, Cheng Y, Ko T, Lin C, Lai H, Huang T, Liu J, Guo R (2014) Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. J Biotechnol 175:1–6. doi:10.1016/j.jbiotec.2014.01.034

    Article  Google Scholar 

  43. Xu W, Shao R, Wang Z, Yan X (2015) Improving the neutral phytase activity from Bacillus amyloliquefaciens DSM 1061 by site-directed mutagenesis. Appl Biochem Biotechnol 175:3184–3194. doi:10.1007/s12010-015-1495-4

    Article  CAS  PubMed  Google Scholar 

  44. Garcia-Fruitos E (2012) Lactic acid bacteria: a promising alternative for recombinant protein production. Microb Cell Fact 11:157. doi:10.1186/1475-2859-11-157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wyszyńska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK (2015) Lactic acid bacteria—20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol 99:2967–2977. doi:10.1007/s00253-015-6498-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. V.Ramachandra Murty (Professor, Department of Biotechnology, Manipal Institute of Technology) for his timely inputs and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Balaji.

Ethics declarations

Conflict of interest

None.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyodip, P., Prakash, P.Y. & Balaji, S. Phytases of Probiotic Bacteria: Characteristics and Beneficial Aspects. Indian J Microbiol 57, 148–154 (2017). https://doi.org/10.1007/s12088-017-0647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0647-3

Keywords

Navigation