Log in

Improving the Neutral Phytase Activity from Bacillus amyloliquefaciens DSM 1061 by Site-Directed Mutagenesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Neutral phytase is used as a feed additive for degradation of anti-nutritional phytate in aquatic feed industry. Site-directed mutagenesis of Bacillus amyloliquefaciens DSM 1061 phytase was performed with an aim to increase its activity. Mutation residues were chosen based on multiple sequence alignments and structure analysis of neutral phytsaes from different microorganisms. The mutation sites on surface (D148E, S197E and N156E) and around the active site (D52E) of phytase were selected. Analysis of the phytase variants showed that the specific activities of mutants D148E and S197E remarkably increased by about 35 and 13 % over a temperature range of 40–75 °C at pH 7.0, respectively. The k cat of mutants D148E and S197E were 1.50 and 1.25 times than that of the wild-type phytase, respectively. Both D148E and S197E showed much higher thermostability than that of the wild-type phytase. However, mutants N156E and D52E led to significant loss of specific activity of the enzyme. Structural analysis revealed that these mutations may affect conformation of the active site of phytase. The present mutant phytases D148E and S197E with increased activities and thermostabilities have application potential as additives in aquaculture feed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh, B., Kunze, G., & Satyanarayana, T. (2011). Biotechnology and Molecular Biology Reviews, 3, 69–87.

    Google Scholar 

  2. Mukhametzyanova, A. D., Akhmetova, A. I., & Sharipova, M. R. (2012). Microbiology, 3, 267–275.

    Article  Google Scholar 

  3. Fu, S. J., Sun, J. Y., Qian, L. C., & Li, Z. (2008). Applied Biochemistry and Biotechnology, 151, 1–8.

    Article  CAS  Google Scholar 

  4. Li, M., Wang, H., & Bun, N. T. (2013). Protein & Peptide Letters, 20, 459–466.

    Article  CAS  Google Scholar 

  5. Nielsen, A. V. F., Tetens, I., & Meyer, A. S. (2013). Nutrients, 5, 3074–3098.

    Article  CAS  Google Scholar 

  6. Roy, S., Mehta, A., & Mishra, R. R. (2013). Vegetos, 26, 83–87.

    Google Scholar 

  7. Cheng, W., Chiu, C. S., & Guu, Y. K. (2013). Aquaculture Nutrition, 19, 117–127.

    Article  CAS  Google Scholar 

  8. Akhmetova, A. I., Nyamsuren, C. H., Balaban, N. P., & Sharipova, M. R. (2013). Russian Journal of Bioorganic Chemistry, 39, 384–389.

    Article  CAS  Google Scholar 

  9. Park, I., Lee, J., & Cho, J. (2012). Asian-Australasian Journal of Animal Sciences, 25, 1466–1472.

    Article  CAS  Google Scholar 

  10. Fei, B., Xu, H., Cao, Y. U., Ma, S., Guo, H., Song, T., Qiao, D., & Cao, Y. J. (2013). Industrial Microbiology and Biotechnology, 40, 457–464.

    Article  CAS  Google Scholar 

  11. Mullaney, E. J., Daly, C. B., Kim, T., & Sethumadhavan, K. (2002). Biochemical and Biophysical Research Communications, 297, 1016–1020.

    Article  CAS  Google Scholar 

  12. Shimizu, M. (1993). Bioscience, Biotechnology, and Biochemistry, 12, 1364–1368.

    Article  Google Scholar 

  13. Kim, M. S., Weaver, J. D., & Lei, X. G. (2008). Applied Microbiology and Biotechnology, 79, 751–758.

    Article  CAS  Google Scholar 

  14. Bei, J., Chen, Z., & Fu, J. (2009). Journal of Biotechnology, 139, 186–193.

    Article  CAS  Google Scholar 

  15. Zhang, W., & Lei, X. G. (2008). Applied Microbiology and Biotechnology, 77, 1033–1040.

    Article  CAS  Google Scholar 

  16. Yao, M. Z., Lu, W. L., Chen, T. G., Wang, W., Fu, Y. J., Yang, B. S., & Liang, A. H. (2014). Annals of Microbiology, 64, 1123–1131.

    Article  CAS  Google Scholar 

  17. Kim, Y. O., Kim, H. K., & Bac, K. S. (1998). Enzyme Microbiological Technology, 12, 45–48.

    Google Scholar 

  18. Powar, V. K., & Jagannathan, V. (1982). Journal of Bacteriology, 151, 1102–1108.

    CAS  Google Scholar 

  19. Choi, Y. M., Suh, H. J., & Kim, J. M. (2001). Protein Chemistry, 143, 231–235.

    Google Scholar 

  20. Farhat, A., Chouayekh, H., & Ben, F. M. (2008). Molecular Biotechnology, 40, 127–135.

    Article  CAS  Google Scholar 

  21. Hmida-Sayari, A., Elgharbi, F., Farhat, A., Rekik, H., Blondeau, K., & Bejar, S. (2014). Molecular Biotechnology, 56, 839–848.

    Article  CAS  Google Scholar 

  22. Borgi, M. A., Khila, M., Boudebbouze, S., Aghajari, N., Szukala, F., Pons, N., Maguin, E., & Rhimi, M. (2014). Applied Mcrobiology and Biotechnology, 98, 5937–5947.

    Article  CAS  Google Scholar 

  23. Belgaroui, N., Zaidi, I., Farhat, A., Chouayekh, H., Bouain, N., Chay, S., Curie, C., Mari, S., Masmoudi, K., Davidian, J. C., Berthomieu, P., Rouached, H., & Hanin, M. (2014). Plant Cell Physiology, 55, 1912–1924.

    Article  Google Scholar 

  24. Tran, T. T., Mamo, G., & Mattiasson, B. (2010). Industrial Microbiology and Biotechnology, 143, 231–235.

    Google Scholar 

  25. Yu, P., & Chen, Y. (2013). BMC Biotechnology, 13, 78–85.

    Article  CAS  Google Scholar 

  26. Li, Z., Zhao, A., Wang, X., **, X., Li, J., & Yu, M. (2013). Journal of Molecular Microbiology and Biotechnology, 23, 193–202.

    Article  CAS  Google Scholar 

  27. Miao, Y., Xu, H., Fei, B., Qiao, D., & Cao, Y. (2013). Journal of Bioscience and Bioengineering, 116, 34–38.

    Article  CAS  Google Scholar 

  28. Vinod, K., Punesh, S., Verma, A. K., & Agrawal, S. (2014). Applied Biochemistry and Biotechnology, 173, 646–659.

    Article  Google Scholar 

  29. Viader-Salvado, J. M., Castillo-Galvan, M., & Fuentes-Garibay, J. A. (2013). Biotechnology Progress, 29, 1377–1385.

    Article  CAS  Google Scholar 

  30. Guerrero-Olazarán, M., Rodríguez-Blanco, L., Carreon-Treviño, J. G., Gallegos-López, J. A., & Viader-Salvadó, J. M. (2010). Applied and Environmental Microbiology, 76, 5601–5608.

    Article  Google Scholar 

  31. Blum, J. K., Ricketts, M. D., & Bommarius, A. S. (2012). Journal of Biotechnology, 160, 214–221.

    Article  CAS  Google Scholar 

  32. Xu, W., Yan, M., Xu, L., Ding, L., & Ouyang, P. (2009). Enzyme Microbiological Technology, 44, 77–83.

    Article  CAS  Google Scholar 

  33. Siloto, R. M. P., & Weselake, R. J. (2012). Biocatalysis and Agricultural Biotechnology, 1, 181–189.

    Article  CAS  Google Scholar 

  34. Xu, W., Cai, P., Yan, M., Xu, L., & Ouyang, P. (2009). Chinese Journal of Chemical Physics, 22, 467–472.

    Article  CAS  Google Scholar 

  35. Oh, B. C., Chang, B. S., & Park, K. H. (2001). Biochemistry, 40, 9669–9676.

    Article  CAS  Google Scholar 

  36. Tung, E. T., Ma, H. W., & Cheng, C. (2008). Protein and Peptide Letters, 15, 297–299.

    Article  CAS  Google Scholar 

  37. Viader-Salvadó, J. M., Gallegos-López, J. A., Carreón-Trevino, J. G., Castillo-Galván, M., Rojo-Domnguez, A., & Guerrero-Olazarn, M. (2010). Applied and Environmental Microbiology, 76, 6423–6430.

    Article  Google Scholar 

  38. Farhat-Khemakhem, A., Ben, A. M., & Boukhris, I. (2013). International Journal of Biological Macromolecules, 54, 9–15.

    Article  CAS  Google Scholar 

  39. Tran, T. T., Mamo, G., Búxo, L., Le, N. N., Gaber, Y., Mattiasson, B., & Hatti-Kaul, R. (2011). Enzyme and Microbial Technology, 49, 177–182.

    Article  CAS  Google Scholar 

  40. Farias, S. T., & Bonato, M. C. M. (2002). Genome Biology, 3, 1–18.

    Article  Google Scholar 

  41. Kumwenda, B., Litthauer, D., Bishop, Ö. T., & Reva, O. (2013). Evolutionary Bioinformatics, 9, 327–342.

    Article  Google Scholar 

  42. Lu, G., Xu, W., Shao, R., & Yun, Z. (2012). China Biotechnology, 33, 153–156.

    Google Scholar 

  43. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  44. King, E. J. (1932). Biochemical Journal, 26, 292–297.

    CAS  Google Scholar 

  45. Guex, N., Diemand, A., & Peitsch, M. C. (1999). Trends in Biochemical Sciences, 24, 364–367.

    Article  CAS  Google Scholar 

  46. Sayle, R. A., & Milner-White, E. J. (1995). Trends in Biochemical Sciences, 20, 374–376.

    Article  CAS  Google Scholar 

  47. Lu, B. S., Wang, G. L., & Huang, P. T. (1998). Acta Microbiologia Sinca, 1, 20–28.

    Google Scholar 

  48. Böttcher, D., & Bornscheuer, U. T. (2010). Current Opinion in Microbiology, 3, 274–282.

    Article  Google Scholar 

  49. Shin, S., Ha, N. C., & Oh, B. C. (2001). Structure, 9, 851–858.

    Article  CAS  Google Scholar 

  50. Zhang, R., Yang, P., Huang, H., Yuan, T., Shi, P., Meng, K., & Yao, B. (2011). Applied Microbiology and Biotechnology, 92, 317–325.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported financially by National Natural Science Foundation of China (No. 31101912), and the Natural Science Foundation of Jiangsu Province of China (No. BK2011420), and Qing Lan Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Shao, R., Wang, Z. et al. Improving the Neutral Phytase Activity from Bacillus amyloliquefaciens DSM 1061 by Site-Directed Mutagenesis. Appl Biochem Biotechnol 175, 3184–3194 (2015). https://doi.org/10.1007/s12010-015-1495-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1495-4

Keywords

Navigation