Log in

Biological leaching of nickel and cobalt from lateritic nickel ore of Sukinda mines

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In the present study lateritic nickel ore was used for bacterial leaching using a mixed consortium of mesophilic acidophiles. The microorganisms were adapted to 1 gram nickel/L prior to leaching. For the experiments, lateritic ore in different forms such as raw, roasted, roasted ore presoaked in dilute sulphuric acid and palletized pretreated roasted (400 °C and 600 °C) ore were taken. The leaching experiments were conducted in 9 K+ with 40 L capacity bioreactor using 10% (v/v) inoculum concentration at 10% (w/v) pulp density. The aeration was maintained at 2–3 L/min and the speed of agitator and temperature at 400–500 rpm and 35 °C. The maximum extraction of nickel and cobalt was observed with pretreated ore (600 °C) at 10% pulp density (77.23% and 73.22%) respectively within 31 days at pH 1.5 and least extraction in case of raw ore i.e., 9.47% nickel and 41.12% cobalt respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Valix and L. O. Loon, Minerals Engineering, 16, 1193 (2002).

    Google Scholar 

  2. I.M. Castro, J. L. R. Fietto, R. X. Vieira, M. J. M. Tropia, L.M. M. Campos, E. B. Paniago and R. L. Brandao, Hydrometallurgy, 57, 39 (2000).

    Article  CAS  Google Scholar 

  3. K. Bosecker, Proceedings of the 6th international symposium on biohydrometallurgy, Vancouver, B. C., Canada., August 21–24, 367 (1985).

  4. P.G. Tzeferis and S. Agatzinin-Leonardou, Hydrometallurgy, 36, 345 (1994).

    Article  CAS  Google Scholar 

  5. M. Valix, J.Y. Tang and R. Malik, Minerals Engineering, 14, 499-5–5 (2001).

    Google Scholar 

  6. M. Valix, F. Usai and V. Malik, Minerals Engineering, 14, 197 (2000).

    Article  Google Scholar 

  7. M. Valix, F. Usai and V. Malik, Minerals Engineering, 14, 205 (2000).

    Article  Google Scholar 

  8. G. Rossi, Eds, L. Murr, A. Torma and J. Brierley, New York: Academic Press, 297–318 (1979).

  9. L. B Sukla, R. N. Kar and V.V. Panchanadikar, In: Recent trends in biotechnology, edited by C. Ayyana, Tata McGraw Hill Publishing Co., New Delhi., 128–131 (1993).

    Google Scholar 

  10. K Alibhai, D. Leak, A.W. L. Dudeney and S. Agatzian, In Proceedings of Mineral Processing, Engineering Foundation of USA, Santa Barbara, July, 191–204 (1992).

  11. D. E. Rawlings, (ed), Biomining, Springer, Berlin (1997).

    Google Scholar 

  12. A. T. Bull, Korean J. Chem. Eng., 18, 137 (2001).

    Article  CAS  Google Scholar 

  13. M. Mishra, S. Singh, T. Das, R. N. Kar, K. S. Rao, L. B. Sukla and B. K. Mishra, Korean J. Chem. Eng., 25, 531 (2008).

    Article  CAS  Google Scholar 

  14. D. E. Dew, Van, C. Buren, K. McKewan and C. Bowker, In: Amils, R, Ballester, A (eds). Biohydrometallurgy and the environment toward the mining of the 21st century, part A, Elsevier, Amsterdam, 229 (1999).

    Google Scholar 

  15. T. Oolman, Biohydrometallurgical technologies, A. E. Torma, J. E. Wiley and V. I. Lakshmanan Eds., The Minerals, Metals and Materials Society, 2, 401–415 (1993).

    Google Scholar 

  16. S. Mohapatra, S. Bohidar, N. Pradhan, R. N. Kar and L. B. Sukla, Hydrometallurgy, 85, 1 (2007).

    Article  CAS  Google Scholar 

  17. L. B. Sukla and R. P. Das, Transactions of the Institute of Mineral and Metallurgy. Sect. C, C53–55 (1986).

  18. E. O. Olanipekun, International Journal of Mineral Processing, 60, 9 (2000).

    Article  CAS  Google Scholar 

  19. L.B. Sukla and R. P. Das, Transactions of the Indian Institute of Metals, 40, 351 (1987).

    Google Scholar 

  20. E. Drobner, H. Huber and K. O. Stetter, Applied Environmental Microbiology, 56, 2922 (1990).

    CAS  Google Scholar 

  21. . J. Ingledew, Biochem. Biophys. Acta., 683, 89 (1982).

    CAS  Google Scholar 

  22. J. M. Gomez, I. Caro and D. Cantero, Journal of Biotechnology, 48, 147 (1996).

    Article  CAS  Google Scholar 

  23. L. J. Mason and N.M. Rice, Minerals Engineering, 15, 795 (2002).

    Article  CAS  Google Scholar 

  24. H.-m. Li and J.-j. Ke, Hydrometallurgy, 61, 151 (2001).

    Article  CAS  Google Scholar 

  25. S. Malhotra, A. S. Tankhiwale, A. S. Rajvaidya and R. A. Pandey, Bioresource Technology, 85, 225 (2002).

    Article  CAS  Google Scholar 

  26. M. P. Silverman and D.G. Lundgren, J. Bacteriology, 77, 642 (1959).

    Article  CAS  Google Scholar 

  27. E. Posnjak and H. E. Merrwin, Journal of American Chemical Society, 44, 1965 (1922).

    Article  CAS  Google Scholar 

  28. M. Valix, J. Y. Tang and W. H. Cheung, Minerals Engineering, 14(12), 1629 (2001).

    Article  CAS  Google Scholar 

  29. H. E. Zeissink, Mineral Deposita., 4, 132 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smaranika Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohapatra, S., Sengupta, C., Nayak, B.D. et al. Biological leaching of nickel and cobalt from lateritic nickel ore of Sukinda mines. Korean J. Chem. Eng. 26, 108–114 (2009). https://doi.org/10.1007/s11814-009-0017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0017-x

Key words

Navigation