Bioleaching of Lateritic Nickel Ores

  • Chapter
  • First Online:
Biotechnological Innovations in the Mineral-Metal Industry

Abstract

Despite nickel-bearing sulfide deposits having a large share of the world's nickel extraction, lateritic ore deposits contain more than 70% of the world's nickel reserves. Considering the limitations of producing nickel from sulfide reserves, the use of oxide reserves (laterites) for the production of nickel will be of great importance in the future. In this chapter, the applications of nickel and cobalt in various industries were described. Nickel and cobalt are mainly used in alloys of other metals. In addition, the most effective methods for extracting nickel and cobalt from lateritic nickel ores were examined. Due to the need for high energy, pyrometallurgical methods, as well as acid leaching, which uses a high amount of acid, are rarely used today. Therefore, the bacterial and fungal leaching methods (bioleaching), which is another hydrometallurgical process, and their mechanisms were explained. Bioleaching is a new prospective method for extracting valuable elements from hard-to-treat ores. The benefits of bioleaching low-grade ores are numerous in comparison to traditional methods due to their simplicity, using unskilled labor, low capital and operating costs, low energy consumption, and also the lowest negative environmental effects. In this processing operation, metals are dissolved from low-grade deposits by using microorganisms and their metabolic products. In addition, the final concentrations of iron in PLS can be decreased by biological methods. The most effective factors in the bioleaching process such as pH, size of sample particles, type of microorganism species, type of substrate, amount of inoculation, type of produced metabolic acid, the pulp solid to liquid ratio, salinity, temperature, and leaching time were explained. Heterotrophic bacteria such as Aspergillus, Penicillium, Pseudomonas, and Delftia were also successful at dissolving laterites, in addition to autotrophic bacteria such as At.ferrooxidans and At.thiooxidans. The presence of O2 is considered a key factor in increasing the bio-reduction dissolution of nickel and cobalt of iron-containing minerals. In addition, high temperature, low density, and pH gained a higher dissolution rate of nickel and cobalt. The main mechanisms for autotrophic acidophilic (iron-oxidizing) and iron-reducing (dissimilatory iron-reducing bacteria) were acidolysis and redoxolysis. In general, biological dissolution and chemical control, respectively, had a greater effect compared with chemical dissolution and diffusion control on the dissolution rate of nickel and cobalt from the laterites. It was found that optimizing factors that affect the bioleaching of nickel and cobalt from nickel-containing laterites greatly increased the dissolution rate, recovered nickel and cobalt, and reduced iron dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agatzini-Leonardou, S., & Zafiratos, I. G. (2004). Beneficiation of a Greek serpentinic nickeliferous ore Part II. Sulphuric acid heap and agitation leaching. Hydrometallurgy, 74(3–4), 267–275.

    Google Scholar 

  • Agatzini-Leonardou, S., Zafiratos, I. G., & Spathis, D. (2004). Beneficiation of a Greek serpentinic nickeliferous ore: Part I. Mineral processing. Hydrometallurgy, 74(3–4), 259–265.

    Article  CAS  Google Scholar 

  • Ahmadi, A., Khezri, M., Abdollahzadeh, A. A., & Askari, M. (2015). Bioleaching of copper, nickel and cobalt from the low grade sulfidic tailing of Golgohar Iron Mine, Iran. Hydrometallurgy, 154, 1–8.

    Article  CAS  Google Scholar 

  • Astuti, W., Hirajima, T., Sasaki, K., & Okibe, N. (2016). Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores. Minerals Engineering, 85, 1–16.

    Article  CAS  Google Scholar 

  • Barrionuevo, M., & Vullo, D. L. (2012). Bacterial swimming, swarming and chemotactic response to heavy metal presence: Which could be the influence on wastewater biotreatment efficiency? World Journal of Microbiology & Biotechnology, 28, 2813–2825.

    Article  CAS  Google Scholar 

  • Behera, S. K., & Mulaba-Bafubiandi, A. F. (2015). Advances in microbial leaching processes for nickel extraction from lateritic minerals-A review. Korean Journal of Chemical Engineering, 32(8), 1447–1454.

    Article  CAS  Google Scholar 

  • Beukes, J., Giesekke, E., & Elliott, W. (2000). Nickel retention by goethite and hematite. Minerals Engineering, 13(14–15), 1573–1579.

    Article  Google Scholar 

  • Biswas, S., Dey, R., Mukherjee, S., Banerjee, P. C. (2013a). Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of aspergillus niger. Applied biochemistry and biotechnology, 170(7), 1547–1559.

    Google Scholar 

  • Biswas, S., Samanta, S., Dey, R., Mukherjee, S., Banerjee, P. C. (2013b). Microbial leaching of chromite overburden from Sukinda mines, Orissa, India using aspergillus niger. International Journal of Minerals, Metallurgy, and Materials, 20(8), 705–712.

    Google Scholar 

  • Borja, D., Nguyen, K. A., Silva, R. A., Park, J. H., Gupta, V., Han, Y., Lee, Y., & Kim, H. (2016). Experiences and future challenges of bioleaching research in South Korea. Minerals, 6(4), 128.

    Article  Google Scholar 

  • Buyukakinci, E. (2008). Extraction of nickel from lateritic ores. Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi.

    Google Scholar 

  • Büyükakinci, E., & Topkaya, Y. (2009). Extraction of nickel from lateritic ores at atmospheric pressure with agitation leaching. Hydrometallurgy, 97(1–2), 33–38.

    Article  Google Scholar 

  • Cabrera, G., Gomez, J. M., Cantero, D. (2005). Kinetic study of ferrous sulphate oxidation of Acidithiobacillus ferrooxidans in the presence of heavy metal ions. Enzyme and Microbial Technology, 36, 301–306.

    Google Scholar 

  • Castro, I. M., Fieto, J. L. R., Vieira, R. X., Trópia, M. J. M., Campos, L. M. M., Paniago, E. B., Brandão, R. L. (2000). Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy, 57, 39–49.

    Google Scholar 

  • Chaerun, S. K., Alting, S. A., Mubarok, M. Z., & Sanwani, E. (2016). Bacterial bioleaching of low grade nickel limonite and saprolite ores by mixotrophic bacteria. In E3S web of conferences. EDP Sciences.

    Google Scholar 

  • Chaerun, S. K., Minwal, W. P., & Mubarok, M. Z. (2017). Indirect bioleaching of low-grade nickel limonite and saprolite ores using fungal metabolic organic acids generated by Aspergillus niger. Hydrometallurgy, 174, 29–37.

    Article  CAS  Google Scholar 

  • Chang, J. H., Hocheng, H., Chang, H. Y., & Shih, A. (2008). Metal removal rate of Thiobacillus thiooxidans without pre-secreted metabolite. Journal of Materials Processing Technology, 201, 560–564.

    Article  CAS  Google Scholar 

  • Chang, Y., Zhai, X., Li, B., & Fu, Y. (2010). Removal of iron from acidic leach liquor of lateritic nickel ore by goethite precipitate. Hydrometallurgy, 101(1–2), 84–87.

    Article  CAS  Google Scholar 

  • Chang, Y., Zhao, K., & Pešić, B. (2016). Selective leaching of nickel from prereduced limonitic laterite under moderate HPAL conditions-Part I: Dissolution. Journal of Mining and Metallurgy B: Metallurgy, 52(2), 127–134.

    Article  CAS  Google Scholar 

  • Ciftci, H., Atik, S. (2017). Microbial leaching of metals from a lateritic nickel ore by pure and mixed cultures of mesophilic acidophiles. Metallurgical Research & Technology, 114(5), 508.

    Google Scholar 

  • Ciftci, H., Atik, S., Gurbuz, F. (2018). Biocatalytic and chemical leaching of a low-grade nickel laterite ore. Metallurgical Research & Technology, 115(3), 305.

    Google Scholar 

  • Coto, O., Galizia, F., Hernández, I., Marrero, J., & Donati, E. (2008). Cobalt and nickel recoveries from laterite tailings by organic and inorganic bio-acids. Hydrometallurgy, 94, 18–22.

    Article  CAS  Google Scholar 

  • Dalvi, A. D., Bacon, W. G., & Osborne, R. C. (2004). The past and the future of nickel laterites. In PDAC 2004 International Convention, Trade Show & Investors Exchange. The prospectors and Developers Association of Canada.

    Google Scholar 

  • Das, G., & De Lange, J. (2011). Reductive atmospheric acid leaching of West Australian smectitic nickel laterite in the presence of sulphur dioxide and copper (II). Hydrometallurgy, 105(3–4), 264–269.

    Article  CAS  Google Scholar 

  • de Alvarenga Oliveira, V., Rodrigues, M. L. M., & Leao, V. A. (2021). Reduction roasting and bioleaching of a limonite ore. Hydrometallurgy, 200, 105554.

    Article  Google Scholar 

  • Doshi, J., & Mishra, S. D. (2007). Bioleaching of lateritic nickel ore using chemolithotrophic micro organisms (Acidithiobacillus ferrooxidans). A thesis submitted in partial fulfillment of the requirements for the degree of bachelor of technology in chemical engineering, National Institute of Technology, Rourkela.

    Google Scholar 

  • du Plessis, C. A., Slabbert, W., Hallberg, K. B., & Johnson, D. B. (2011). Ferredox: A biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy, 109, 221–229.

    Article  Google Scholar 

  • Dusengemungu, L., Kasali, G., Gwanama, C., & Mubemba, B. (2021). Overview of fungal bioleaching of metals. Environmental Advances, 5, 100083.

    Article  CAS  Google Scholar 

  • Esther, J., Pattanaik, A., Pradhan, N., & Sukla, L. B. (2020). Applications of dissimilatory iron reducing bacteria (DIRB) for recovery of Ni and Co from low-grade lateritic nickel ore. Materials Today: Proceedings, 30, 351–354.

    CAS  Google Scholar 

  • Fatahi, M., Noaparast, M., & Shafaei, S. Z. (2014). Nickel extraction from low grade laterite by agitation leaching at atmospheric pressure. International Journal of Mining Science and Technology, 24(4), 543–548.

    Article  Google Scholar 

  • Gadd, G. M. (2001). Microbial metal transformations. The Journal of Microbiology, 39(2), 83–88.

    CAS  Google Scholar 

  • Giese, E. C., Carpen, H. L., Bertolino, L. C., & Schneider, C. L. (2019). Characterization and bioleaching of nickel laterite ore using Bacillus subtilis strain. Biotechnology Progress, 35(6), e2860.

    Article  CAS  Google Scholar 

  • Girgin, I., Obut, A., & Üçyildiz, A. (2011). Dissolution behaviour of a Turkish lateritic nickel ore. Minerals Engineering, 24(7), 603–609.

    Article  CAS  Google Scholar 

  • Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondratéva, T. F., Moore, E. R., Abraham, W. R., Lünsdorf, H., Timmis, K. N., Yakimov, M. M., & Golyshin, P. N. (2000). Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. International Journal of Systematic and Evolutionary Microbiology, 50(3), 997–1006.

    Google Scholar 

  • Gomes, J., & Steiner, W. (2004). The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol., 42(4), 223–235.

    CAS  Google Scholar 

  • Hallberg, K. B., Grail, B. M., du Plessis, C. A., & Johnson, D. B. (2011). Reductive dissolution of ferric iron minerals: A new approach for bio-processing nickel laterites. Minerals Engineering, 24, 620–624.

    Article  CAS  Google Scholar 

  • Hosseini Nasab, M., Noaparast, M., & Abdollahi, H. (2021). Direct and indirect bioleaching of Co and Ni from iron rich laterite ore using Delftia acidovorans and Acidithiobacillus ferrooxidans. Journal of Mining and Environment, 12(2), 471–489.

    Google Scholar 

  • Jang, H. C., & Valix, M. (2017). Overcoming the bacteriostatic effects of heavy metals on Acidithiobacillus thiooxidans for direct bioleaching of saprolitic Ni laterite ores. Hydrometallurgy, 168, 21–25.

    Article  CAS  Google Scholar 

  • Javanshir, S., Mofrad, Z. H., & Azargoon, A. (2018). Atmospheric pressure leaching of nickel from a low-grade nickel-bearing ore. Physicochemical Problems of Mineral Processing, 54(3), 890–900.

    CAS  Google Scholar 

  • Johnson, D. B. (2012). Reductive dissolution of minerals and selective recovery of metals using acidophilic iron- and sulfate-reducing acidophiles. Hydrometallurgy, 127–128, 172–177.

    Article  Google Scholar 

  • Johnson, D. B., Grail, B. M., & Hallberg, K. B. (2013). A new direction for biomining: Extraction of metals by reductive dissolution of oxidized ores. Minerals, 3, 49–58.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2003). The microbiology of acidic mine waters. Research in Microbiology, 154(7), 466–473.

    Article  CAS  Google Scholar 

  • Johnson, D. B., McGinness, S. (1991). Ferric iron reduction by acidophilic heterotrophic bacteria. Applied and Environmental Microbiology, 57, 207–211.

    Google Scholar 

  • Karidakis, T., Agatzini-Leonardou, S., & Neou-Syngouna, P. (2005). Removal of magnesium from nickel laterite leach liquors by chemical precipitation using calcium hydroxide and the potential use of the precipitate as a filler material. Hydrometallurgy, 76(1–2), 105–114.

    Article  CAS  Google Scholar 

  • Kawabe, Y., Inoue, C., Suto, K., Chida, T. (2003). Inhibitory effect of high concentrations of ferric ions on the activity of Acidithiobacillus ferrooxidans. Journal of Bioscience and Bioengineering, 96, 375–379.

    Google Scholar 

  • Kelly, D. P., & Wood, A. P. (2000). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology, 50(2), 511–516.

    Google Scholar 

  • Kim, J., Dodbiba, G., Tanno, H., Okaya, K., Matsuo, S., & Fujita, T. (2010). Calcination of low-grade laterite for concentration of Ni by magnetic separation. Minerals Engineering, 23(4), 282–288.

    Article  CAS  Google Scholar 

  • Krstev, B., Krstev. A., Golomeova, M., & Golomeov, B. (2012). The recent trends and perspectives of leaching or bioleaching from nickel oxided ores. In Scientific Proceedings IX International Congress “Machines, Technologies, Materials” (pp. 107–109).

    Google Scholar 

  • Kursunoglu, S., & Kaya, M. (2016). Atmospheric pressure acid leaching of Caldag lateritic nickel ore. International Journal of Mineral Processing, 150, 1–8.

    Article  CAS  Google Scholar 

  • Le, L., Tang, J., Ryan, D., & Valix, M. (2006). Bioleaching nickel laterite ores using multi-metal tolerant Aspergillus foetidus organism. Minerals Engineering, 19(12), 1259–1265.

    Article  CAS  Google Scholar 

  • Lee, H. Y., Kim, S. G., & Oh, J. K. (2005). Electrochemical leaching of nickel from low-grade laterites. Hydrometallurgy, 77(3–4), 263–268.

    Article  CAS  Google Scholar 

  • Li, D., Kyung-ho, P., Wu, Z., & Xue-yi, G. (2010). Response surface design for nickel recovery from laterite by sulfation-roasting-leaching process. Transactions of Nonferrous Metals Society of China, 20, 92–96.

    Article  CAS  Google Scholar 

  • Li, G. H., Rao, M. J., Qian, L., Peng, Z. W., & Jiang, T. (2010). Extraction of cobalt from laterite ores by citric acid in presence of ammonium bifluoride. Transactions of Nonferrous Metals Society of China, 20(8), 1517–1520.

    Article  CAS  Google Scholar 

  • Li, G., Zhou, Q., Zhu, Z., & Jiang, T. (2018). Selective leaching of nickel and cobalt from limonitic laterite using phosphoric acid: An alternative for value-added processing of laterite. Journal of Cleaner Production, 189, 620–626.

    Article  CAS  Google Scholar 

  • Li, J., Li, X., Hu, Q., Wang, Z., Zhou, Y., Zheng, J., Liu, W., & Li, L. (2009). Effect of pre-roasting on leaching of laterite. Hydrometallurgy, 99(1–2), 84–88.

    Article  CAS  Google Scholar 

  • Li, S., Zhong, H., Hu, Y., Zhao, J., He, Z., & Gu, G. (2014). Bioleaching of a low-grade nickel–copper sulfide by mixture of four thermophiles. Bioresource Technology, 153, 300–306.

    Article  CAS  Google Scholar 

  • Liu, K., Chen, Q., & Hu, H. (2009). Comparative leaching of minerals by sulphuric acid in a Chinese ferruginous nickel laterite ore. Hydrometallurgy, 98(3–4), 281–286.

    Article  CAS  Google Scholar 

  • Luo, W., Feng, Q., Ou, L., Zhang, G., & Lu, Y. (2009). Fast dissolution of nickel from a lizardite-rich saprolitic laterite by sulphuric acid at atmospheric pressure. Hydrometallurgy, 96(1–2), 171–175.

    Article  CAS  Google Scholar 

  • Luptakova, A., & Kusnierova, M. (2005). Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy, 77(1–2), 97–102.

    Article  CAS  Google Scholar 

  • MacCarthy, J., Nosrati, A., Skinner, W., & Addai-Mensah, J. (2014). Atmospheric acid leaching of nickel laterite: Effect of temperature, particle size and mineralogy. In Chemeca, Processing excellence; Powering our future (p. 1273). Western Australia.

    Google Scholar 

  • Marrero, J., Coto, O., Goldmann, S., Graupner, T., & Schippers, A. (2015). Recovery of Nickel and cobalt from laterite tailings by reductive dissolution under aerobic conditions using Acidithiobacillus species. Environmental Science and Technology, 49, 6674–6682.

    Article  CAS  Google Scholar 

  • Marrero, J., Coto, O., & Schippers, A. (2017). Anaerobic and aerobic reductive dissolutions of iron-rich nickel laterite overburden by Acidithiobacillus. Hydrometallurgy, 168, 49–55.

    Article  CAS  Google Scholar 

  • McDonald, R. G., & Whittington, B. I. (2008a). Atmospheric acid leaching of nickel laterites review: Part I. Sulphuric acid technologies. Hydrometallurgy, 91(1–4), 35–55.

    Article  CAS  Google Scholar 

  • McDonald, R., & Whittington, B. (2008b). Atmospheric acid leaching of nickel laterites review. Part II. Chloride and bio-technologies. Hydrometallurgy, 91(1–4), 56–69.

    Article  CAS  Google Scholar 

  • Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R. N., & Sukla, L. B. (2007). Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy, 85, 1–8.

    Article  CAS  Google Scholar 

  • Mohapatra, S., Sengupta, C., Nayak, B. D., Sukla, L. B., & Mishra, B. K. (2009a). Biological leaching of nickel and cobalt from lateritic nickel ore of Sukinda mines. Korean Journal of Chemical Engineering, 26(1), 108–114.

    Article  CAS  Google Scholar 

  • Mohapatra, S., Pradhan, N., Mohanty, S., & Sukla, L. B. (2009b). Recovery of nickel from lateritic nickel ore using Aspergillus niger and optimization of parameters. Minerals Engineering, 22(3), 311–313.

    Article  CAS  Google Scholar 

  • Molchanov, S., Gendel, Y., Lahav, O. (2007). Improved experimental and computational methodology for determining the kinetic equation and the extant kinetic constants of Fe(II) oxidation by Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology, 73, 1742–1752.

    Google Scholar 

  • Morel, M. A., Iriarte, A., Jara, E., Musto, H., & Sowinski, S. C. (2016). Revealing the biotechnological potential of Delftia sp. JD2 by a genomic approach. AIMS Bioengineering, 3(2), 156–175.

    Google Scholar 

  • Moskalyk, R., & Alfantazi, A. (2002). Nickel laterite processing and electrowinning practice. Minerals Engineering, 15(8), 593–605.

    Article  CAS  Google Scholar 

  • Mubarok, M. Z., Kusuma, H., Minwal, W. P., & Chaerun, S. K. (2013). Effects of several parameters on nickel extraction from laterite ore by direct bioelaching using Aspergillus niger and acid rock drainage from coal mine as an organic substrate. In Advanced materials research. Trans Tech Publ.

    Google Scholar 

  • Mulroy, D. (2019). The microbiology of lateritic Co-Ni-bearing manganese oxides.

    Google Scholar 

  • Nasab, M. H., Noaparast, M., Abdollahi, H., & Amoozegar, M. A. (2020a). Indirect bioleaching of Co and Ni from iron rich laterite ore, using metabolic carboxylic acids generated by P. putida, P. koreensis, P. bilaji and A. niger. Hydrometallurgy, 193, 105309.

    Google Scholar 

  • Nasab, M. H., Noaparast, M., Abdollahi, H., & Amoozegar, M. A. (2020b). Kinetics of two-step bioleaching of Ni and Co from iron rich-laterite using supernatant metabolites produced by Salinivibrio kushneri as halophilic bacterium. Hydrometallurgy, 195, 105387.

    Article  Google Scholar 

  • Natarajan, K. A., Iwasaki, I. (1983). Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides. Separation Science and Technology, 18, 1095–1111.

    Google Scholar 

  • Newsome, L., Arguedas, A. S., Coker, V. S., Boothman, C., & Lloyd, J. R. (2020). Manganese and cobalt redox cycling in laterites; Biogeochemical and bioprocessing implications. Chemical Geology, 531, 119330.

    Article  Google Scholar 

  • Nicol, M. J., & Zainol, Z. (2003). The development of a resin-in-pulp process for the recovery of nickel and cobalt from laterite leach slurries. International Journal of Mineral Processing, 72(1–4), 407–415.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., Alpers, C. N., Ptacek, C. J., & Blowes, D. W. (2000). Negative pH and extremely acidic mine waters from Iron Mountain, California. Environmental Science and Technology, 34(2), 254–258.

    Article  CAS  Google Scholar 

  • Norgate, T., & Jahanshahi, S. (2011). Assessing the energy and greenhouse gas footprints of nickel laterite processing. Minerals Engineering, 24(7), 698–707.

    Article  CAS  Google Scholar 

  • Ojumu, T. V., Petersen, J., Searby, G. E., Hansford, G. S. (2006). A review of rate equations proposed for the microbial ferrous-iron oxidation with a view to application to heap bioleaching. Hydrometallurgy, 83, 21–28.

    Google Scholar 

  • Onal, M. A. R., & Topkaya, Y. A. (2014). Pressure acid leaching of Caldag lateritic nickel ore: An alternative to heap leaching. Hydrometallurgy, 1(42), 98–107.

    Article  Google Scholar 

  • Pawlowska, A., & Sadowski, Z. (2017). Influence of chemical and biogenic leaching on surface area and particle size of laterite ore. Physicochemical Problems of Mineral Processing, 53(2), 869–877.

    CAS  Google Scholar 

  • Petrus, H., Wanta, K. C., Setiawan, H., Perdana, I., & Astuti, W. (2018). Effect of pulp density and particle size on indirect bioleaching of Pomalaa nickel laterite using metabolic citric acid. In IOP Conference Series: Materials Science and Engineering. IOP Publishing.

    Google Scholar 

  • Pronk, J. T., Liem, K., Bos, P., Kuenen, J. G. (1991). Energy transduction by anaerobic ferric iron reduction in Thiobacillus ferrooxidan. Applied and Environmental Microbiology, 57, 2063–2068.

    Google Scholar 

  • Rampelotto, P. (2013). Extremophiles and extreme environments. Life, 3(3), 482–485.

    Article  Google Scholar 

  • Rasti, S., & Rajabzadeh, M. A. (2017). Mineralogical and geochemical characteristics of serpentinite-derived Ni-bearing laterites from Fars Province, Iran: Implications for the Lateritization process and classification of Ni-laterites. International Journal of Geological and Environmental Engineering, 11(7), 603–608.

    Google Scholar 

  • Rothschild, L. J., & Mancinelli, R. L. (2001). Life in extreme environments. Nature, 409(6823), 1092–1101.

    Google Scholar 

  • Sadat, A. S., Ahmadi, A., & Zilouei, H. (2016). Separation of Cu from dilute Cu–Ni–Co bearing bioleach solutions using solvent extraction with Chemorex CP-150. Separation Science and Technology, 51(18), 2903–2912.

    Article  CAS  Google Scholar 

  • Sahu, S., Kavuri, N., & Kundu, M. (2011). Dissolution kinetics of nickel laterite ore using different secondary metabolic acids. Brazilian Journal of Chemical Engineering, 28(2), 251–258.

    Article  CAS  Google Scholar 

  • Santos, A. L., Dybowska, A., Schofield, P. F., Herrington, R. J., & Johnson, D. B. (2020). Sulfur-enhanced reductive bioprocessing of cobalt-bearing materials for base metals recovery. Hydrometallurgy, 195, 105396.

    Article  CAS  Google Scholar 

  • Santos, L. R. G., Barbosa, A. F., Souza, A. D., & Leão, V. A. (2006). Bioleaching of a complex nickel–iron concentrate by mesophile bacteria. Minerals Engineering, 19(12), 1251–1258.

    Article  CAS  Google Scholar 

  • Simate, G. S., & Ndlovu, S. (2007). Characterisation of factors in the bacterial leaching of nickel laterites using statistical design of experiments. In Advanced Materials Research. Trans Tech Publ.

    Google Scholar 

  • Simate, G., Ndlovu, S., & Gericke, M. (2009a). The effect of elemental sulphur and pyrite on the leaching of nickel laterites using chemolithotrophic bacteria. In Hydrometallurgy Conference.

    Google Scholar 

  • Simate, G. S., & Ndlovu, S. (2008). Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: Identifying influential factors using statistical design of experiments. International Journal of Mineral Processing, 88, 31–36.

    Article  CAS  Google Scholar 

  • Simate, G. S., Ndlovu, S., & Gericke, M. (2009b). Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: Process optimization using response surface methodology and central composite rotatable design. Hydrometallurgy, 98, 241–246.

    Article  CAS  Google Scholar 

  • Simate, G. S., Ndlovu, S., & Walubita, L. F. (2010). The fungal and chemolithotrophic leaching of nickel laterites—Challenges and opportunities. Hydrometallurgy, 103(1–4), 150–157.

    Article  CAS  Google Scholar 

  • Smith, S. L., Grail, B. M., & Johnson, D. B. (2017). Reductive bioprocessing of cobalt-bearing limonitic laterites. Minerals Engineering, 106, 86–90.

    Article  CAS  Google Scholar 

  • Stankovic, S., Stopic, S., Sokic, M., Markovic, B., & Friedrich, B. (2020). Review of the past, present and future of the hydrometallurgical production of nickel and cobalt from lateritic ores. Metallurgical and Materials Engineering, 26(2), 199–208.

    Article  Google Scholar 

  • Swamy, K., Narayana, K., & Misra, V. N. (2005). Bioleaching with ultrasound. Ultrasonics Sonochemistry, 12(4), 301–306.

    Article  CAS  Google Scholar 

  • Tang, J., & Valix, M. (2004). Leaching of low-grade nickel ores by fungi metabolic acids. In Proceedings of Separations Technology VI: New Perspectives on Very Large-Scale Operations (pp. 1–16).

    Google Scholar 

  • Tang, J., & Valix, M. (2006). Leaching of low grade limonite and nontronite ores by fungi metabolic acids. Minerals Engineering, 19(12), 1274–1279.

    Article  CAS  Google Scholar 

  • Thangavelu, V., Tang, J., Ryan, D., & Valix, M. (2006). Effect of saline stress on fungi metabolism and biological leaching of weathered saprolite ores. Minerals Engineering, 19(12), 1266–1273.

    Article  CAS  Google Scholar 

  • Toni, D. B. J., & Bridge, A. M. (2000). Reductive dissolution of ferric iron minerals by Acidiphilium SJH. Geomicrobiology Journal, 17(3), 193–206.

    Article  Google Scholar 

  • Ubalde, M. C., Brana, V., Sueiro, F., Morel, M. A., Martinez-Rosales, C., Marquez, C., & Castro-Sowinski, S. (2012). The versatility of Delftia sp. isolates as tools for bioremediation and biofertilization technologies. Current Microbiology, 64, 597–603.

    Article  CAS  Google Scholar 

  • Valix, M., & Cheung, W. (2002). Study of phase transformation of laterite ores at high temperature. Minerals Engineering, 15(8), 607–612.

    Article  CAS  Google Scholar 

  • Valix, M., Thangavelu, V., Ryan, D., & Tang, J. (2009). Using halotolerant Aspergillus foetidus in bioleaching nickel laterite ore. International Journal of Environment and Waste Management, 3(3–4), 253–264.

    Article  CAS  Google Scholar 

  • Valix, M., Usai, F., & Malik, R. (2001a). Fungal bio-leaching of low grade laterite ores. Minerals Engineering, 14(2), 197–203.

    Article  CAS  Google Scholar 

  • Valix, M., Tang, J. Y., Malik, R. (2001b). The electro-sorption properties of nickel on laterite gangue leached with an organic chelating acid. Minerals Engineering, 14(2), 2005–2215.

    Google Scholar 

  • Watling, H. R. (2008). The bioleaching of nickel-copper sulfides. Hydrometallurgy, 91, 70–88.

    Article  CAS  Google Scholar 

  • Whittington, B., McDonald, R. G., Johnson, J. A., & Muir, D. M. (2003a). Pressure acid leaching of arid-region nickel laterite ore: Part I: Effect of water quality. Hydrometallurgy, 70(1–3), 31–46.

    Article  CAS  Google Scholar 

  • Whittington, B., McDonald, R. G., Johnson, J. A., & Muir, D. M. (2003b). Pressure acid leaching of arid-region nickel laterite ore: Part II. Effect of ore type. Hydrometallurgy, 70(1–3), 47–62.

    Article  CAS  Google Scholar 

  • Wu, A., Zhang, Y., Zheng, C., Dai, Y., Liu, Y., Zeng, J., Gu, G., & Liu, J. (2008). Purification and enzymatic characteristics of cysteine desulfurase, IscS, in Acidithiobacillus ferrooxidans ATCC 23270. Transactions of the Nonferrous Metals Society of China, 18, 1450–1457.

    Article  CAS  Google Scholar 

  • Yang, Y., Ferrier, J., Csetenyi, L., & Gadd, G. M. (2019). Direct and indirect bioleaching of cobalt from low grade laterite and pyritic ores by Aspergillus niger. Geomicrobiology Journal, 36(10), 940–949.

    Article  CAS  Google Scholar 

  • Zou, G., Papirio, S., van Hullebusch, E. D., & Puhakka, J. A. (2015). Fluidized-bed denitrification of mining water tolerates high nickel concentrations. Bioresource Technology, 179, 284–290.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Abdollahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdollahi, H., Hosseini Nasab, M., Yadollahi, A. (2024). Bioleaching of Lateritic Nickel Ores. In: Panda, S., Mishra, S., Akcil, A., Van Hullebusch, E.D. (eds) Biotechnological Innovations in the Mineral-Metal Industry. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-031-43625-3_3

Download citation

Publish with us

Policies and ethics

Navigation