Log in

Symbolic Computation of Local Symmetries of Nonlinear and Linear Partial and Ordinary Differential Equations

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

The paper illustrates the use of a symbolic software package GeM for Maple to compute local symmetries of nonlinear and linear differential equations (DEs). In the cases when a given DE system contains arbitrary functions or parameters, symbolic symmetry classification is performed. Special attention is devoted to the computation of point symmetries of linear PDE systems. Routines are available that effectively eliminate infinite obvious symmetries of linear DEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhatov I.S., Gazizov R.K., Ibragimov N.H.: Group classification of the equations of nonlinear filtration. Sov. Math. Dokl. 35, 384–386 (1987)

    MATH  Google Scholar 

  2. Bluman G.W.: Simplifying the form of Lie groups admitted by a given differential equation. J. Math. Anal. Appl. 145, 52–62 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bluman G.W., Kumei S.: Symmetries and differential equations. Springer, New York (1989)

    MATH  Google Scholar 

  4. Bluman G.W., Kumei S., Reid G.J.: New classes of symmetries for partial differential equations. J. Math. Phys. 29, 806–811 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bluman G.W., Cheviakov A.F., Ivanova N.M.: Framework for nonlocally related PDE systems and nonlocal symmetries: extension, simplification, and examples. J. Math. Phys. 47, 113505 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bluman G.W., Cheviakov A.F., Anco S.C.: Applications of symmetry methods to partial differential equations. Springer, New York (2010)

    Book  MATH  Google Scholar 

  7. Bogoyavlenskij O.I.: Infinite symmetries of the ideal MHD equilibrium equations. Phys. Lett. A 291(4–5), 256–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Burde G.I.: Potential symmetries of the nonlinear wave equation u tt = (uu x ) x and related exact and approximate solutions. J. Phys. A: Math. Gen. 34, 5355–5371 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Butcher J., Carminati J., Vu K.T.: A comparative study of the computer algebra packages which determine the Lie point symmetries of differential equations. Comput. Phys. Commun. 155(2), 92–114 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheviakov A.F.: Bogoyavlenskij symmetries of ideal MHD equilibria as Lie point transformations. Phys. Lett. A. 321(1), 34–49 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hereman, W.: Symbolic software for Lie symmetry analysis. In: Ibragimov, N.H. (ed.) CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3. New Trends in Theoretical Developments and Computational Methods, Chap. 13, pp. 367–413. CRC Press, Boca Raton (1996)

  12. Hereman W.: Review of symbolic software for Lie symmetry analysis. Math. Comput. Model. 25, 115–132 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hereman W.: Symbolic computation of conservation laws of nonlinear partial differential equations in multi-dimensions. Int. J. Quant. Chem. 106, 278–299 (2005)

    Article  Google Scholar 

  14. Ibragimov, N.H. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1. CRC Press, Boca Raton (1993)

  15. Korteweg D.J., de Vries G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Google Scholar 

  16. Lisle I., Huang T.S.-L.: Algorithmic symmetry classification with invariance. J. Eng. Math. 66(1–3), 201–216 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Olver P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    MATH  Google Scholar 

  18. Ovsiannikov L.V.: Group properties of the nonlinear heat conduction equation. Dokl. Akad. Nauk USSR 125, 492–495 (1959) in Russian

    Google Scholar 

  19. Ovsiannikov L.V.: Group Properties of Differential Equations. Novosibirsk, Nauka (1962) in Russian

    Google Scholar 

  20. Ovsiannikov L.V.: Group Analysis of Differential Equations. Academic, New York (1982)

    MATH  Google Scholar 

  21. Reid, G.J., Wittkopf, A.D.: Determination of maximal symmetry groups of classes of differential equations. In: Proc. ISSAC 2000, pp. 272–280. ACM Press (2000)

  22. Reid G.J., Wittkopf A.D., Boulton A.: Reduction of systems of nonlinear partial differential equations to simplified involutive forms. Eur. J. Appl. Math. 7, 604–635 (1996)

    Article  MathSciNet  Google Scholar 

  23. Temuerchaolu G.: An algorithmic theory of reduction of differential polynomial systems. Adv. Math. 32, 208–220 (2003) in Chinese

    Google Scholar 

  24. Wolf T.: Investigating differential equations with CRACK, LiePDE, Applysymm and ConLaw. In: Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds) Handbook of Computer Algebra, Foundations, Applications, Systems, pp. 465–468. Springer, New York (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei F. Cheviakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheviakov, A.F. Symbolic Computation of Local Symmetries of Nonlinear and Linear Partial and Ordinary Differential Equations. Math.Comput.Sci. 4, 203–222 (2010). https://doi.org/10.1007/s11786-010-0051-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-010-0051-4

Keywords

Navigation