Symbolic and Numerical Methods for Searching Symmetries of Ordinary Differential Equations with a Small Parameter and Reducing Its Order

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2019)

Abstract

Two programs for computer algebra systems are described that deal with Lie algebras of generators admitted by systems of ordinary differential equations (ODEs). The first one allows to find the generators of admitted transformations in the specified form. This program is written in Python and based on SciPy library. It does not require solving partial differential equations symbolically and can also analyze equations with Riemann–Liouville fractional derivatives and find approximate symmetries for systems of equations with a small parameter. The second program written as a package for Maple computes the operator of invariant differentiation in special form for given Lie algebra of generators. This operator is used for order reduction of given ODE systems.

Supported by the Ministry of Science and High Education of the Russian Federation (State task No. 1.3103.2017/4.6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olver, P.J.: Applications of Lie Groups to Differential Equations, 1st edn. Springer-Verlag, New York (1986). https://doi.org/10.1007/978-1-4684-0274-2

    Book  MATH  Google Scholar 

  2. Ovsyannikov, L.V.: Group Analysis of Differential Equations, 1st edn. Academic Press, New York (1982)

    Google Scholar 

  3. Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. John Wiley and Sons, Chichester (1999)

    MATH  Google Scholar 

  4. Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: Approximate groups of transformations. Differ. Uravn. 29(10), 1712–1732 (1993). (in Russian)

    MathSciNet  MATH  Google Scholar 

  5. Ayub, M., Mahomed, F.M., Khan, M., Qureshi, M.N.: Symmetries of second-order systems of ODEs and integrability. Nonlinear Dyn. 74, 969–989 (2013). https://doi.org/10.1007/s11071-013-1016-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Wafo Soh, C., Mahomed, F.M.: Reduction of order for systems of ordinary differential equations. J. Nonlinear Math. Phys. 11(1), 13–20 (2004). https://doi.org/10.2991/jnmp.2004.11.1.3

    Article  MathSciNet  MATH  Google Scholar 

  7. Gainetdinova, A.A., Gazizov, R.K.: Integrability of systems of two second-order ordinary differential equations admitting four-dimensional Lie algebras. Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 473(2197), 20160461 (2017). https://doi.org/10.1098/rspa.2016.0461. 13 pp

    Article  MathSciNet  MATH  Google Scholar 

  8. Gazizov, R.K., Gainetdinova, A.A.: Operator of invariant differentiation and its application for integrating systems of ordinary differential equations. Ufa Math. J. 9(4), 12–21 (2017). https://doi.org/10.13108/2017-9-4-12

    Article  MathSciNet  Google Scholar 

  9. Gainetdinova, A.A.: Integration of systems of ordinary differential equations with a small parameter which admit approximate Lie algebras. Vestnik Udmurtskogo Universiteta: Matematika, Mekhanika, Komp’yuternye Nauki 28(2), 143–160 (2018). https://doi.org/10.20537/vm180202. (in Russian)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, The Netherlands (2006)

    MATH  Google Scholar 

  11. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Yu.: Symmetries and group invariant solutions of fractional ordinary differential equations. In: Kochubei, A., Luchko, Yu. (eds.) Fractional Differential Equations, pp. 65–90. De Gruyter, Berlin (2019). https://doi.org/10.1515/9783110571660

    MATH  Google Scholar 

  12. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Yu.: Symmetries, conservation laws and group invariant solutions of fractional PDEs. In: Kochubei, A., Luchko, Yu. (eds.) Fractional Differential Equations, pp. 353–382. De Gruyter, Berlin (2019). https://doi.org/10.1515/9783110571660

    MATH  Google Scholar 

  13. Galaktionov, V.A., Svirshchevskii, S.R.: Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman and Hall/CRC (2006). https://doi.org/10.1201/9781420011623

  14. Gazizov, R.K., Kasatkin, A.A.: Construction of exact solutions for fractional order differential equations by the invariant subspace method. Comput. Math. Appl. 66(5), 576–584 (2013). https://doi.org/10.1016/j.camwa.2013.05.006

    Article  MathSciNet  MATH  Google Scholar 

  15. Sahadevan, R., Bakkyaraj, T.: Invariant subspace method and exact solutions of certain nonlinear time fractional partial differential equations. Fractional Calc. Appl. Anal. 18(1), 146–162 (2015). https://doi.org/10.1515/fca-2015-0010

    Article  MathSciNet  MATH  Google Scholar 

  16. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Yu.: Linearly autonomous symmetries of the ordinary fractional differential equations. In: Proceedings of 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA 2014), pp. 1–6. IEEE (2014). https://doi.org/10.1109/ICFDA.2014.6967419

  17. Kasatkin, A.A.: Symmetry properties for systems of two ordinary fractional differential equations. Ufa Math. J. 4(1), 71–81 (2012)

    MathSciNet  Google Scholar 

  18. Hereman, W.: Review of symbolic software for Lie symmetry analysis. Math. Comput. Model. 25(8–9), 115–132 (1997). https://doi.org/10.1016/S0895-7177(97)00063-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Cheviakov, A.F.: Symbolic computation of local symmetries of nonlinear and linear partial and ordinary differential equations. Math. Comput. Sci. 4(2–3), 203–222 (2010). https://doi.org/10.1007/s11786-010-0051-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Vu, K.T., Jefferson, G.F., Carminati, J.: Finding higher symmetries of differential equations using the MAPLE package DESOLVII. Comput. Phys. Commun. 183(4), 1044–1054 (2012). https://doi.org/10.1016/j.cpc.2012.01.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Jefferson, G.F., Carminati, J.: FracSym: automated symbolic computation of Lie symmetries of fractional differential equations. Comput. Phys. Commun. 185(1), 430–441 (2014). https://doi.org/10.1016/j.cpc.2013.09.019

    Article  MATH  Google Scholar 

  22. Merkt, B., Timmer, J., Kaschek, D.: Higher-order Lie symmetries in identifiability and predictability analysis of dynamic models. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 92(1), 012920 (2015). https://doi.org/10.1103/PhysRevE.92.012920

    Article  MathSciNet  Google Scholar 

  23. Golub, G.H., Van Loan, C.F.: Matrix Computations. JHU Press, Baltimore (2012)

    MATH  Google Scholar 

  24. Bagderina, Y.Y., Gazizov, R.K.: Invariant representation and symmetry reduction for differential equations with a small parameter. Commun. Nonlinear Sci. Num. Simul. 9(1), 3–11 (2004). https://doi.org/10.1016/S1007-5704(03)00010-8

    Article  MathSciNet  MATH  Google Scholar 

  25. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, e103 (2017). https://doi.org/10.7717/peerj-cs.103

    Article  Google Scholar 

  26. Gainetdinova, A.A.: Computer program registration certificate 2018618063. Federal Service for Intellectual Property (Rospatent). Registered on 07 September 2018

    Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. R.K. Gazizov and Prof. S.Yu. Lukashchuk for constructive discussion. Also we thank the referees whose comments helped us a lot to improve the early draft of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Kasatkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kasatkin, A.A., Gainetdinova, A.A. (2019). Symbolic and Numerical Methods for Searching Symmetries of Ordinary Differential Equations with a Small Parameter and Reducing Its Order. In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation