Log in

Determination of minimum cover depth for shallow tunnel subjected to water pressure

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Prediction of the state of roof collapse is a big challenge in tunnel engineering, while the limit analysis theory makes it possible to derive the analytical solutions of the collapse mechanisms. In this work, an exact solution of collapsing shape in shallow underwater tunnel is obtained by using the variation principle and the upper bound theorem based on nonlinear failure criterion. Numerical results under the effect of river water and supporting pressure are derived and discussed. The maximum water depth above the river bottom surface is determined under a given buried depth of shallow cavities and the critical depth of roof collapse is obtained under a constant river depth. In comparison with the previous results, the present solution shows a good agreement with the practical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DAVIS E H, DUNN M J, MAIR R J, SENEVIRATNE H N. The stability of shallow tunnels and underground openings in cohesive material [J]. Geotechnique, 1980, 30(4): 397–416.

    Article  Google Scholar 

  2. YIN J H, WANG Y J, SELVADURAI A P S. Influence of nonassociation on the bearing capacity of a strip footing [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(11): 985–989.

    Article  Google Scholar 

  3. YANG X L, YIN J H. Slope stability analysis with nonlinear failure criterion [J]. Journal of Engineering Mechanics, 2004, 130(3): 267–273.

    Article  Google Scholar 

  4. YANG X L, LI L, YIN J H. Seismic and static stability analysis for rock slopes by a kinematical approach [J]. Geotechnique, 2004, 54(8): 543–549.

    Article  Google Scholar 

  5. YANG X L, LI L, YIN J H. Stability analysis of rock slopes with a modified Hoek-Brown failure criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(2): 181–190.

    Article  MATH  Google Scholar 

  6. JIMENEZ R, SERRANO A, OLALLA C. Linearization of the Hoek and Brown rock failure criterion for tunneling in elasto-plastic rock massed [J]. International Journal of Rock Mechanics and Mining Science, 2008, 45(7): 1153–1163.

    Article  Google Scholar 

  7. LI A J, MERIFIELD R S, LYAMIN A V. Stability charts for rock slopes based on the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 689–700.

    Article  Google Scholar 

  8. YANG X L, YIN J H. Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(4): 550–560.

    Article  MathSciNet  Google Scholar 

  9. YANG X L, ZOU J F. Stability factors for rock slopes subjected to pore water pressure based on the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(7): 1146–1152.

    Article  Google Scholar 

  10. YANG X L. Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 948–953.

    Article  Google Scholar 

  11. MERIFIELD R S, LYAMIN A V, SLOAN S W. Limit analysis solutions for the bearing capacity of rock masses using the generalized Hoek-Brown criterion [J]. International Journal of Rock Mechanics and Mining Science, 2006, 43(6): 920–937.

    Article  Google Scholar 

  12. FRALDI M, GUARRACINO F. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5): 665–673.

    Google Scholar 

  13. FRALDI M, GUARRACINO F. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections [J]. International Journal of Solids and Structures, 2010, 47(1): 216–223.

    Article  MATH  Google Scholar 

  14. HUANG F M, WANG M S, TAN Z S, WANG X Y. Analytical solutions for steady seepage into an underwater circular tunnel [J]. Tunneling and Underground Space Technology, 2010, 25: 391–396.

    Article  Google Scholar 

  15. FENG K, HE C, ZHOU J M, ZHANG Z. Model test on impact of surrounding rock deterioration on segmental lining structure for underwater shield tunnel with large cross-section [J]. Procedia Environmental Sciences, 2012, 12: 891–898.

    Article  Google Scholar 

  16. WANG X Y, TAN Z S, WANG M S, ZHANG M, HUANG F M. Theoretical and experimental study of external water pressure on tunnel lining in controlled drainage under high water level [J]. Tunnelling and Underground Space Technology, 2008, 23: 552–560.

    Article  Google Scholar 

  17. MICHALOWSKI R L. Slope stability analysis: A kinematical approach [J]. Geotechnique, 1995, 45(2): 282–293.

    MathSciNet  Google Scholar 

  18. YANG X L. Seismic bearing capacity of a strip footing on rock slopes [J]. Canadian Geotechnical Journal, 2009, 46(8): 943–954.

    Article  Google Scholar 

  19. YANG X L, YIN J H. Slope equivalent Mohr-Coulomb strength parameters for rock masses satisfying the Hoek-Brown criterion [J]. Rock Mechanics and Rock Engineering, 2010, 43(4): 505–511.

    Article  MathSciNet  Google Scholar 

  20. YANG X L, WANG J M. Ground movement prediction for tunnels using simplified procedure [J]. Tunnelling and Underground Space Technology, 2011, 26(3): 462–471.

    Article  Google Scholar 

  21. HOEK E, BROWN ET. Practical estimate the rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186.

    Article  Google Scholar 

  22. KAMATA H, MASHIMO H. Centrifuge model test of tunnel face reinforcement by bolting [J]. Tunnelling and Underground Space Technology, 2003, 18(3): 205–212.

    Article  Google Scholar 

  23. YANG X L. Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion [J]. Theoretical and Applied Fracture Mechanics, 2007, 47(1): 46–56.

    Article  Google Scholar 

  24. YANG X L. Seismic passive pressures of earth structures by nonlinear optimization [J]. Archive of Applied Mechanics, 2011, 81(9): 1195–1202.

    Article  Google Scholar 

  25. YANG X L, ZOU J F. Cavity expansion analysis with non-linear failure criterion [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2011, 164(1): 41–49.

    Article  MathSciNet  Google Scholar 

  26. MOLLON G, DIAS D, SOUBRA A H. Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(12): 1363–1388.

    Article  Google Scholar 

  27. MOLLON G, DIAS D, SOUBRA A H. Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1314–1325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Huang  (黄阜).

Additional information

Foundation item: Project(2013CB036004) supported by the National Basic Research Program of China; Project(51178468) supported by the National Natural Science Foundation of China; Project(2013zzts235) supported by Research Foundation of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, F., Qin, Cb. & Li, Sc. Determination of minimum cover depth for shallow tunnel subjected to water pressure. J. Cent. South Univ. 20, 2307–2313 (2013). https://doi.org/10.1007/s11771-013-1738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1738-x

Key words

Navigation