Log in

Slope Equivalent Mohr–Coulomb Strength Parameters for Rock Masses Satisfying the Hoek–Brown Criterion

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Abbreviations

c t :

Intercept of the straight line to τ-axes

D :

Disturbance coefficient varying from 0.0 to 1.0

f1f3:

Non-dimensional functions

H :

Height of inclined rock slope

k :

Cohesion coefficient

L :

Distance between the sliding surface at the top and the edge

m :

Material constant

m i :

Material constant

n :

Material constant

N L :

Stability factor for linear failure criterion

N n :

Stability factor for nonlinear failure criterion

R 0 :

The initial radius of the log-spiral in Fig. 1

Fig. 1
figure 1

Failure mechanism for a homogeneous slope

s :

Material constant

v t :

Velocity at velocity discontinuity

α :

Angle of the slope in Fig. 1

β :

Angle of the slope in Fig. 1

γ :

Unit weight of the rock mass

θ 0 :

Angle related horizontal line to line OB in Fig. 1

θ h :

Angle related horizontal line to line OC in Fig. 1

φ t :

Tangent friction angle

σ 1 :

Maximum principal stress

σ 3 :

Minimum principal stress

σ c :

Uniaxial compressive stress

σ n :

Normal component of the failure surface

τ :

Shear component of the failure surface

References

  • Agar JG, Morgenstern NR, Scott J (1985) Shear strength and stress–strain behaviour of Athabasca oil sand at elevated temperatures and pressure. Can Geotech J 24(1):1–10

    Article  Google Scholar 

  • Cai M (2007) Back-analysis of rock mass strength parameters using AE monitoring data. Int J Rock Mech Mining Sci 44(4):538–549

    Article  Google Scholar 

  • Cai M, Kaiser PK, Tasaka Y, Minami M (2007) Determination of residual strength of jointed rock masses using the GSI system. Int J Rock Mech Mining Sci 44(2):247–265

    Article  Google Scholar 

  • Chen WF (1975) Limit analysis and soil plasticity. Elsevier Science, Amsterdam

    Google Scholar 

  • Collins IF, Gunn CI, Pender MJ, Yan W (1988) Slope stability analyses for materials with nonlinear failure envelope. Int J Numer Anal Methods Geomech 12(6):533–550

    Article  Google Scholar 

  • Donald IB, Chen ZY (1997) Slope stability analysis by the upper bound approach: fundamental and method. Can Geotech J 34(6):853–862

    Article  Google Scholar 

  • Goodman RE (1989) Introduction to rock mechanics, 2nd edn. Wiley, New York

    Google Scholar 

  • Hobbs D (1966) A study of the behaviour of broken rock under triaxial compression and its application to mine roadways. Int J Rock Mech Mining Sci 3:11–43

    Article  Google Scholar 

  • Hoek E (1990) Estimating Mohr–Coulomb friction and cohesion values from the Hoek–Brown failure criterion. Int J Rock Mech Mining Sci 27(3):227–229

    Article  Google Scholar 

  • Hoek E, Carranze-Torres C, Corkum B (2002) Hoek–Brown failure criterion-2002 edition. In: Proceedings of the North American Rock Mechanics Society Meeting, pp 267–273

  • Kennedy TC, Lindberg HE (1978) Tunnel closure for nonlinear Mohr Coulomb functions. J Eng Mech Div 104(EM6):1313–1326

    Google Scholar 

  • Lysmer J (1970) Limit analysis of plane problems in soil mechanics. ASCE J Soil Mech Found Div 96:1311–1334

    Google Scholar 

  • Sofianos AI (2003) Tunnelling Mohr–Coulomb strength parameters for rock masses satisfying the generalized Hoek–Brown criterion. Int J Rock Mech Mining Sci 40(5):435–440

    Article  Google Scholar 

  • Sofianos AI, Halakatevakis N (2002) Equivalent tunnelling Mohr–Coulomb strength parameters from given Hoek–Brown ones. Int J Rock Mech Mining Sci 39(1):131–137

    Article  Google Scholar 

  • Sofianos AI, Nomikos PP (2006) Equivalent Mohr–Coulomb and generalized Hoek–Brown strength parameters for supported axisymmetric tunnels in plastic or brittle rock. Int J Rock Mech Mining Sci 43(5):683–704

    Article  Google Scholar 

  • Wang YJ, Yin JH (2002) Wedge stability analysis considering dilatancy of discontinuities. Rock Mech Rock Eng 25(2):127–137

    Article  Google Scholar 

  • Yang XL, Yin JH (2006) Linear Mohr–Coulomb strength parameters from the nonlinear Hoek–Brown rock masses. Int J Non-Linear Mech 41(8):1000–1005

    Article  Google Scholar 

  • Yang XL, Li L, Yin JH (2004) Seismic and static stability analysis for rock slopes by a kinematical approach. Geotechnique 54(8):543–549

    Google Scholar 

  • Yu HS, Sloan SW (1997) Finite element limit analysis of reinforced soils. Comput Struct 63:567–577

    Article  Google Scholar 

  • Yu HS, Salgado R, Sloan SW (1998) Limit analysis versus limit equilibrium for slope stability. ASCE J Geotech Geoenviron Eng 124(3):265–276

    Article  Google Scholar 

Download references

Acknowledgments

The preparation of this paper has received financial supports from the Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 200550) and the Foundation for the Hunan Provincial Natural Science Foundation of China (No. 09JJ1008). These financial supports are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao-Li Yang.

Appendix

Appendix

$$ f_{1} = \frac{{\left( {3\tan \varphi_{t} \cos \theta_{h} + \sin \theta_{h} } \right)\exp \left[ {3\left( {\theta_{h} - \theta_{0} } \right)\tan \varphi_{t} } \right] - \left( {3\tan \varphi_{t} \cos \theta_{0} + \sin \theta_{0} } \right)}}{{3\left( {1 + 9\tan^{2} \varphi_{t} } \right)}} $$
(9)
$$ f_{2} = \frac{1}{6}\frac{L}{{r_{0} }}\left( {2\cos \theta_{0} - \frac{L}{{r_{0} }}\cos \alpha } \right)\sin \left( {\theta_{0} + \alpha } \right) $$
(10)
$$\begin{aligned} f_{3} &= {\frac{{\exp \left[ {\left( {\theta_{h} - \theta_{0} } \right)\tan \varphi_{t} } \right]}}{6} \cdot \left[ {\sin \left( {\theta_{h} - \theta_{0} } \right) - \frac{L}{{r_{0} }}\sin \left( {\theta_{h} + \alpha } \right)} \right]} \\ &\quad \times{\left\{ {\cos \theta_{0} - \frac{L}{{r_{0} }}\cos \alpha + \cos \theta_{h} \cdot \exp \left[ {\left( {\theta_{h} - \theta_{0} } \right)\tan \varphi_{t} } \right]} \right\}} \\ \end{aligned} $$
(11)
$$ \frac{L}{{r_{0} }} = \frac{{\sin \left( {\theta_{h} - \theta_{0} } \right)}}{{\sin \left( {\theta_{h} + \alpha } \right)}} - \frac{{\sin \left( {\theta_{h} + \beta } \right)}}{{\sin \left( {\theta_{h} + \alpha } \right)\sin \left( {\beta - \alpha } \right)}} \cdot \left\{ {\exp \left[ {\left( {\theta_{h} - \theta_{0} } \right)\tan \varphi_{t} } \right]\sin \left( {\theta_{h} + \alpha } \right) - \sin \left( {\theta_{0} + \alpha } \right)} \right\} $$
(12)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, XL., Yin, JH. Slope Equivalent Mohr–Coulomb Strength Parameters for Rock Masses Satisfying the Hoek–Brown Criterion. Rock Mech Rock Eng 43, 505–511 (2010). https://doi.org/10.1007/s00603-009-0044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-009-0044-2

Keywords

Navigation