Log in

Supercritical Carbon Dioxide Extraction, Fatty Acid Composition, Oxidative Stability, and Antioxidant Effect of Torreya grandis Seed Oil

  • Original Paper
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Torreya grandis seed oil (TGSO) extraction with supercritical carbon dioxide was explored from the extraction conditions, fatty acid composition, its oxidative stability and antioxidant activity in a bench-scale apparatus. An L9(34) orthogonal design was applied to optimize extraction parameters. The results demonstrated that the maximum yield of 94.57 % was obtained at 45 MPa, 4 h and 50 °C. There were 18 kinds of compounds found within TGSO; the predominant ingredient was linoleic acid (42.02 %), followed by oleic acid (32.14 %) and dihomo-γ-linolenic acid (9.80 %). The IC50 values for 1,6-bis(diphenylphosphino) hexane radical (DPPH), hydroxyl radical (HO•) and superoxide radical (O2 ·−) were 5.61, 3.16 and 4.20 mg/mL, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Beatrice G, Francesco G, Virginia L, Domenico M, Raffaele R, Claudio V, He GF, Ma ZW, Yin WF (1999) Grandione, a new heptacyclic dimer diterpene from Torreya grandis Fort. Tetrahedron 55:11385–11394

    Article  Google Scholar 

  2. Belarbi M, Bendimerad S, Sour S, Soualem Z, Baghdad C, Hmimed S, Chemat F, Visioli F (2011) Oleaster oil positively modulates plasma lipids in humans. J Agric Food Chem 59:8667–8669

    Article  CAS  Google Scholar 

  3. Chen BQ, Cui XY, Zhao X, Zhang YH, Piao HS, Kim H, Lee BC, Pyo HB, Yun YP (2006) Antioxidative and acute antiinflammatory effects of Torreya grandis. Fitoterapia 27:262–267

    Article  Google Scholar 

  4. Li ZJ, Luo CF, Cheng XJ, Feng XJ, Yu WW (2005) Component analysis and nutrition evaluation of seeds of Torreya grandis (Merrillii). J Zhejiang For Coll 22:540–544

    Article  CAS  Google Scholar 

  5. Chen ZD, Zhen HC, Fu QH (1988) Determination of Oil Contents and Fatty Acids in Seeds of Torreya Arn. J Chin Mater Medica 23:456–458

    Google Scholar 

  6. Papamichail I, Louli V, Magoulas K (2000) Supercritical fluid extraction of celery seed oil. J Supercrit Fluids 18:213–2267

    Article  CAS  Google Scholar 

  7. Caredda A, Marongiu B, Porcedda S, Soro C (2002) Supercritical carbon dioxide extraction and characterization of Laurus nobilis essential oil. J Agric Food Chem 50:1492–1496

    Article  CAS  Google Scholar 

  8. Liu W, Fu YJ, Zu YG, Tong MH, Wu N, Liu XL, Zhang S (2009) Supercritical carbon dioxide extraction of seed oil from Opuntia dillenii Haw and its antioxidant activity. Food Chem 114:334–339

    Article  CAS  Google Scholar 

  9. Shen Z, Wijesundera C, Ye JH (2012) Effect of seed heat-treatment on the oxidative stability of canola oil body emulsions. Food Nutri Sci 3:981–990

    Google Scholar 

  10. Li K, Li XM, Gloer JB, Wang BG (2011) Isolation, characterization, and antioxidant activity of bromophenols of the marine red alga Rhodomela confervoides. J Agric Food Chem 59:9916–9921

    Article  CAS  Google Scholar 

  11. Li YH, Jiang B, Zhang T, Mu WM, Liu J (2008) Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem 106:444–450

    Article  CAS  Google Scholar 

  12. Lou V, Folas G, Voutasa E, Magoulas K (2003) Extraction of parsley seed oil by supercritical CO2. J Supercrit Fluids 7:1–12

    Google Scholar 

  13. Muller L, Frolich K, Bohm V (2011) Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (aTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem 129:139–148

    Article  CAS  Google Scholar 

  14. Lin KH, Ye SY, Lin MY, Shi MC, Yang KT, Hwang SY (2007) Major chemotypes and antioxidative activity of the leaf essential oils of Cinnamomum osmophloeum Kaneh from a clonal orchard. Food Chem 105:133–139

    Article  CAS  Google Scholar 

  15. Muhammad K, Saeeda Yulin Deng, Daib R, Li W, Yu Y, Zafar I (2010) Appraisal of antinociceptive and anti-inflammatory potential of extract and fractions from the leaves of Torreya grandis Fort Ex Lindl. J Ethnopharmacol 127:414–418

    Article  Google Scholar 

  16. Reinoso BD, Moure A, Domianguez H, Parajoa JC (2006) Supercritical CO2 extraction and purification of compounds with antioxidant activity. J Agric Food Chem 54:2441–2469

    Article  CAS  Google Scholar 

  17. Sandra BG, Dus RM, Marko DS, Irena TZ, Ruz MA, Dejan US (2007) Supercritical carbon dioxide extraction of carrot fruit essential oil: chemical composition and antimicrobial activity. Food Chem 105:346–352

    Article  CAS  Google Scholar 

  18. Trautwein EA (2001) n-3 Fatty acids: physiological and technical aspects for their use in food. Eur J Lipid Sci Technol 103:45–55

    Article  CAS  Google Scholar 

  19. Wang M, Wei YM, Gao JM (2006) Cholesterol lowering effect of tartary buckwheat germ oil in hypercholesterolemic rat. J Chin Cereals Oils Assoc 21:45–48

    CAS  Google Scholar 

  20. Zhu KX, Zhou HM, Qian HF (2006) Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochem 41:1296–1302

    Article  CAS  Google Scholar 

  21. Kanatt SR, Chander R, Sharma A (2007) Antioxidant potential of mint (Mentha spicata L.) in radiation processed lamb meat. Food Chem 100:451–458

    Article  CAS  Google Scholar 

  22. Ferramosca A, Savy V, Conte L, Zara V (2008) Dietary combination of conjugated linoleic acid (CLA) and pine nut oil prevents CLA-induced fatty liver in mice. J Agric Food Chem 56:8148–8158

    Article  CAS  Google Scholar 

  23. Huang YJ, Wang JF, Li GL, Zheng ZH, Su WJ (2001) Antitumor and antifungal activities in endophytic fungi isolated from pharmaceutical plants, Taxus mairei, Cephalataxus fortunei and Torreya grandis. FEMS Immunol Med Microbiol 31:163–167

    Article  CAS  Google Scholar 

  24. Hu QH, Xu J, Chen SB, Yang FM (2004) Antioxidant activity of extracts of black sesame seed (Sesamum indicum L.) by supercritical carbon dioxide extraction. J Agric Food Chem 52:943–947

    Article  CAS  Google Scholar 

  25. Jirovetz L, Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E (2006) Chemical composition and antioxidant properties of clove leaf essential oil. J Agric Food Chem 54:6303–6307

    Article  CAS  Google Scholar 

  26. Khajeh M, Yamini Y, Sefidkon F, Bahramifar N (2004) Comparison of essential oil composition of Carum copticum obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food Chem 86:587–591

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Zhejiang Municipal Natural Science Foundation (No.LY12C20003), The Outstanding Dissertation Growth Foundation of Ningbo University, and K. C. Wang Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Wang.

About this article

Cite this article

Dong, D., Wang, H., Xu, F. et al. Supercritical Carbon Dioxide Extraction, Fatty Acid Composition, Oxidative Stability, and Antioxidant Effect of Torreya grandis Seed Oil. J Am Oil Chem Soc 91, 817–825 (2014). https://doi.org/10.1007/s11746-014-2419-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-014-2419-0

Keywords

Navigation