Log in

Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis

钴铁层状双金属氢氧化物空心多面体用于高效电催 化二氧化碳还原

  • Letters
  • Published:
Science China Materials Aims and scope Submit manuscript

摘要

可再生能源驱动电催化二氧化碳还原制备高附加值化学燃料, 是一种实现二氧化碳资源化的有效途径. 以金属有机骨架(MOF)为模 板制备的层状双金属氢氧化物空心多面体已成为当前电催化领域的热 门材料. 然而, 该类材料的高析氢活性严重阻碍了其在电催化二氧化碳 还原中的应用. 基于此, 本文报道了一种在离子液体电解液中可高效稳 定电催化二氧化碳还原的钴铁层状双金属氢氧化物空心多面体(CoFe LDH/HP), 其最大法拉第转换效率可达86% ± 3% (−0.9 V相对于可逆氢 电极), 且可连续电解30 h. 实验结果表明此CoFe LDH/HP因其独特的 空心结构可暴露更多的活性位点, 从而具有更快的电催化二氧化碳还 原动力学; 理论计算表明CoFe LDH/HP中Co–O–Fe键有利于稳定关键 中间体(*COOH)并降低相应的活化势垒. 本研究可为其他层状双金属 氢氧化物用于二氧化碳固定的设计提供参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zheng Y, Vasileff A, Zhou X, et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J Am Chem Soc, 2019, 141: 7646–7659

    Article  CAS  Google Scholar 

  2. Yang H, Han N, Deng J, et al. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv Energy Mater, 2018, 8: 1801536

    Article  Google Scholar 

  3. Gao T, **e T, Han N, et al. Electronic structure engineering of 2D carbon nanosheets by evolutionary nitrogen modulation for synergizing CO2 electroreduction. ACS Appl Energy Mater, 2019, 2: 3151–3159

    Article  CAS  Google Scholar 

  4. Wang L, Chen W, Zhang D, et al. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem Soc Rev, 2019, 48: 5310–5349

    Article  CAS  Google Scholar 

  5. Yang C, Wang Y, Qian L, et al. Heterogeneous electrocatalysts for CO2 reduction. ACS Appl Energy Mater, 2021, 4: 1034–1044

    Article  CAS  Google Scholar 

  6. Wang X, Chen Z, Zhao X, et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew Chem Int Ed, 2018, 57: 1944–1948

    Article  CAS  Google Scholar 

  7. Ji S, Qu Y, Wang T, et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed, 2020, 59: 10651–10657

    Article  CAS  Google Scholar 

  8. Li Y. Hybrid atomic layers based electrocatalyst converts waste CO2 into liquid fuel. Sci China Mater, 2016, 59: 1–3

    Article  Google Scholar 

  9. Li Y. Photosynthetic conversion of CO2 to acetic acid by an inorganic-biological hybrid system. Sci China Mater, 2016, 59: 93–94

    Article  Google Scholar 

  10. Ji Y, Shi Y, Liu C, et al. Plasma-regulated N-doped carbon nanotube arrays for efficient electrosynthesis of syngas with a wide CO/H2 ratio. Sci China Mater, 2020, 63: 2351–2357

    Article  Google Scholar 

  11. Yang D, Wang G, Wang X. Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion. Sci China Mater, 2019, 62: 1369–1373

    Article  Google Scholar 

  12. Cai Z, Zhang Y, Zhao Y, et al. Selectivity regulation of CO2 electro-reduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res, 2019, 12: 345–349

    Article  CAS  Google Scholar 

  13. Zhou Y, Zhou R, Zhu X, et al. Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate. Adv Mater, 2020, 32: 2000992

    Article  CAS  Google Scholar 

  14. Pan Y, Lin R, Chen Y, et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J Am Chem Soc, 2018, 140: 4218–4221

    Article  CAS  Google Scholar 

  15. Yang H, Wu Y, Li G, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J Am Chem Soc, 2019, 141: 12717–12723

    Article  CAS  Google Scholar 

  16. Zhang P, Wang S, Guan BY, et al. Fabrication of CdS hierarchical multi-cavity hollow particles for efficient visible light CO2 reduction. Energy Environ Sci, 2019, 12: 164–168

    Article  CAS  Google Scholar 

  17. Li D, Liu T, Yan Z, et al. MOF-derived Cu2O/Cu nanospheres anchored in nitrogen-doped hollow porous carbon framework for increasing the selectivity and activity of electrochemical CO2-to-formate conversion. ACS Appl Mater Interfaces, 2020, 12: 7030–7037

    Article  CAS  Google Scholar 

  18. Tan D, Lee W, Kim YE, et al. SnO2/ZnO composite hollow nanofiber electrocatalyst for efficient CO2 reduction to formate. ACS Sustain Chem Eng, 2020, 8: 10639–10645

    CAS  Google Scholar 

  19. Huo H, Liu D, Feng H, et al. Double-shelled Cu2O/MnOx mesoporous hollow structure for CO2 photoreduction with enhanced stability and activity. Nanoscale, 2020, 12: 13912–13917

    Article  CAS  Google Scholar 

  20. Qin Y, Han X, Li Y, et al. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis. ACS Catal, 2020, 10: 5973–5978

    Article  CAS  Google Scholar 

  21. Lin X, Wang S, Tu W, et al. MOF-derived hierarchical hollow spheres composed of carbon-confined Ni nanoparticles for efficient CO2 methanation. Catal Sci Technol, 2019, 9: 731–738

    Article  CAS  Google Scholar 

  22. Li P, Wang M, Duan X, et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat Commun, 2019, 10: 1711

    Article  Google Scholar 

  23. Cai M, Liu Q, Xue Z, et al. Constructing 2D MOFs from 2D LDHs: A highly efficient and durable electrocatalyst for water oxidation. J Mater Chem A, 2020, 8: 190–195

    Article  CAS  Google Scholar 

  24. Chen S, Duan J, Jaroniec M, et al. Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew Chem Int Ed, 2013, 52: 13567–13570

    Article  CAS  Google Scholar 

  25. Gu H, Shi G, Chen HC, et al. Strong catalyst-support interactions in electrochemical oxygen evolution on Ni-Fe layered double hydroxide. ACS Energy Lett, 2020, 5: 3185–3194

    Article  CAS  Google Scholar 

  26. Fagiolari L, Bini M, Costantino F, et al. Iridium-doped nanosized Zn-Al layered double hydroxides as efficient water oxidation catalysts. ACS Appl Mater Interfaces, 2020, 12: 32736–32745

    Article  CAS  Google Scholar 

  27. Jung E, Kim JK, Choi H, et al. Aqueous-phase synthesis of layered double hydroxide nanoplates as catalysts for the oxygen evolution reaction. Dalton Trans, 2018, 47: 17342–17348

    Article  CAS  Google Scholar 

  28. **ong X, Zhao Y, Shi R, et al. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci Bull, 2020, 65: 987–994

    Article  CAS  Google Scholar 

  29. Dewangan N, Hui WM, Jayaprakash S, et al. Recent progress on layered double hydroxide (LDH) derived metal-based catalysts for CO2 conversion to valuable chemicals. Catal Today, 2020, 356: 490–513

    Article  CAS  Google Scholar 

  30. Chen G, Gao R, Zhao Y, et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv Mater, 2018, 30: 1704663

    Article  Google Scholar 

  31. Jia X, Zhao Y, Chen G, et al. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv Energy Mater, 2016, 6: 1502585

    Article  Google Scholar 

  32. Yang H, Chen Z, Guo P, et al. B-do**-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl Catal B-Environ, 2020, 261: 118240

    Article  CAS  Google Scholar 

  33. Mohapatra L, Parida K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J Mater Chem A, 2016, 4: 10744–10766

    Article  CAS  Google Scholar 

  34. Tran NV, Tieu AK, Zhu H. First-principles molecular dynamics study on the surface chemistry and nanotribological properties of MgAl layered double hydroxides. Nanoscale, 2021, 13: 5014–5025

    Article  CAS  Google Scholar 

  35. Zhang Z, Song J, Han B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem Rev, 2017, 117: 6834–6880

    Article  CAS  Google Scholar 

  36. Ren W, Tan X, Chen X, et al. Confinement of ionic liquids at single-Ni-sites boost electroreduction of CO2 in aqueous electrolytes. ACS Catal, 2020, 10: 13171–13178

    Article  CAS  Google Scholar 

  37. Sun X, Lu L, Zhu Q, et al. MoP nanoparticles supported on indium-doped porous carbon: Outstanding catalysts for highly efficient CO2 electroreduction. Angew Chem Int Ed, 2018, 57: 2427–2431

    Article  CAS  Google Scholar 

  38. Huan TN, Simon P, Rousse G, et al. Porous dendritic copper: an electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte. Chem Sci, 2017, 8: 742–747

    Article  CAS  Google Scholar 

  39. Qin Y, Wang F, Shang J, et al. Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction. J Energy Chem, 2020, 43: 104–107

    Article  Google Scholar 

  40. Qin Y, Wang B, Qiu Y, et al. Multi-shelled hollow layered double hydroxides with enhanced performance for the oxygen evolution reaction. Chem Commun, 2021, 57: 2752–2755

    Article  CAS  Google Scholar 

  41. Yang Y, Ou Y, Yang Y, et al. Modulated transition metal-oxygen covalency in the octahedral sites of CoFe layered double hydroxides with vanadium do** leading to highly efficient electrocatalysts. Nanoscale, 2019, 11: 23296–23303

    Article  CAS  Google Scholar 

  42. Xu H, Yuan Y, Liao Y, et al. [MoS4]2− cluster bridges in Co-Fe layered double hydroxides for mercury uptake from S-Hg mixed flue gas. Environ Sci Technol, 2017, 51: 10109–10116

    Article  CAS  Google Scholar 

  43. Liu X, Yang H, He J, et al. Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4. Small, 2018, 14: 1704049

    Article  Google Scholar 

  44. Sui R, Pei J, Fang J, et al. Engineering Ag-Nx single-atom sites on porous concave N-doped carbon for boosting CO2 electroreduction. ACS Appl Mater Interfaces, 2021, 13: 17736–17744

    Article  CAS  Google Scholar 

  45. Pei J, Wang T, Sui R, et al. N-bridged Co-N-Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ Sci, 2021, 14: 3019–3028

    Article  CAS  Google Scholar 

  46. Attanayake NH, Banjade HR, Thenuwara AC, et al. Electrocatalytic CO2 reduction on earth abundant 2D Mo2C and Ti3C2 MXenes. Chem Commun, 2021, 57: 1675–1678

    Article  CAS  Google Scholar 

  47. Gao S, Lin Y, Jiao X, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature, 2016, 529: 68–71

    Article  CAS  Google Scholar 

  48. Xu J, Lai S, Hu M, et al. Semimetal 1H-SnS2 enables high-efficiency electroreduction of CO2 to CO. Small Methods, 2020, 4: 2000567

    Article  CAS  Google Scholar 

  49. Hsieh YC, Senanayake SD, Zhang Y, et al. Effect of chloride anions on the synthesis and enhanced catalytic activity of silver nanocoral electrodes for CO2 electroreduction. ACS Catal, 2015, 5: 5349–5356

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) (KF190411), and Tian** Natural Science Foundation (18JCQNJC77100). The authors also acknowledge Bei**g PARATERA Tech CO., Ltd. for providing HPC resources that have contributed to the research results reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Liu X and Qin Y designed the project. Yang M and Sun J performed the main experiments and Yang H wrote this manuscript. Zhang S and Luo J helped to analyze the data, discussed the results and contributed to the theoretical analysis. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Yongji Qin  (秦永吉), Hui Yang  (杨慧) or **jun Liu  (刘熙俊).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Experimental details and supporting data are available in the online version of the paper.

Miaosen Yang received her PhD degree in chemical engineering and technology from Bei**g University of Chemical Technology in 2012. Her current scientific interests focus on the design, preparation and application of inorganic functional materials and organic-inorganic composite materials.

Hui Yang received her PhD degree in materials science in 2013 from the South China University of Technology (SCUT). She currently conducts scientific research at Tian** University of Technology. Her current research mainly focuses on the synthesis of advanced nanomaterials for catalytic applications.

**jun Liu received his PhD degree from the College of Science, Bei**g University of Chemical Technology in 2014. His current scientific interests focus on nanomaterials, heterogeneous catalysis, and materials design for catalysts and energy conversion/storage.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Sun, J., Qin, Y. et al. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis. Sci. China Mater. 65, 536–542 (2022). https://doi.org/10.1007/s40843-021-1890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1890-7

Navigation