Log in

Optimization of the rapid effective extraction, antioxidant, antiproliferative and alpha-amylase activities in Plantago ovata seed non-adherent and adherent mucilage by RSM

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Plantago ovata seed is comprises two distinct layers: a non-adherent outer layer that can easily extracted by gentle agitation, and an adherent inner layer, which is extremely difficult to separate from the seed coat. This study aims to develop and optimize an efficient method for extracting adherent and non-adherent mucilage from P. ovata seeds and to evaluate its biological activities. The extraction process variables were optimized using the response surface methodology (RSM) based on Box-behnken Design with three factors at three levels, to test different experimental conditions and achieve the highest yield. Our results demonstrate that ultrasound treatment was an efficient method for the rapid extraction of both mucilage layers. The aqueous treatment involved a seed-to-water ratio of 1:60, an extraction time of 1.4 h with constant stirring at 45 °C and pH 8, followed by sonication at 100% amplitude for 60 min with pulses of 10 s ON and 20 s OFF for non-adherent mucilage extraction. For the adherent mucilage, the extraction time was adjusted to 1 h with constant stirring at 45 °C and a seed-to-water ratio of 1:50. This process facilitated the recovery of nearly all P. ovata seed mucilage, estimated at approximately 40 mg/g of seeds (39.85% ~ 40%). Evaluation of antioxidant activity in vitro showed that aqueous extracts of P.ovata mucilage had antiradical activity (IC50 = 202 µg/ml), ferric reducing power (IC50 = 310 µg/ml), important total antioxidant activity (16.84 mg EAG/g MS), inhibitory effect on alpha amylase (IC50 = 2.13 mg/ml), and exhibits strong antiproliferative effects on Caco2 cells (IC50 = 90 µg/ml).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. R. Pandita, X. **ao, W. Yang, W. Enck, T. **e, Towards automating risk assessment of mobile applications. In 22nd Security SympoWashington, D.C. (2013), pp. 527–542

  2. R. Ashwini, M. Madgulkar, R.P. Rao, D. Warrier, Polysaccharides (2014). https://doi.org/10.1007/978-3-319-03751-6_49-1

  3. K.M. Huerta, J.S. Alves, A.F.C. Silva, E.H. Kubota, C.S. Rosa, Food Sci. Technol. (2016). https://doi.org/10.1590/1678-457X.0032

    Article  Google Scholar 

  4. L. Yu, G.E. Yakubov, W. Zeng, X. **ng, J. Stenson, V. Bulone, J.R. Stokes, Carbohydr. Polym. (2017). https://doi.org/10.1016/j.carbpol.2017.02.038

    Article  PubMed  Google Scholar 

  5. F. Chemat, M.A. Vian, G. Cravotto, Int. J. Mol. Sci. (2012). https://doi.org/10.3390/ijms13078615

    Article  PubMed  PubMed Central  Google Scholar 

  6. Q. Guo, S.W. Cui, Q. Wang, J.C. Young, Carbohydr. Polym. (2008). https://doi.org/10.1016/j.carbpol.2007.11.001

    Article  Google Scholar 

  7. Y. Yu, M. Shen, Q. Song, J. **e, Carbohydr. Polym. (2018). https://doi.org/10.1016/j.carbpol.2017.12.009

    Article  PubMed  Google Scholar 

  8. N. Addoun, Z. Boual, C. Delattre, A.V. Ursu, J. Desbrières, D. Le Cerf, G. Pierre, Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.106

    Article  PubMed  Google Scholar 

  9. J.C. Gasparetto, C.A.F. Martins, S.S. Hayashi, J. Pharm. Phamacol. (2012). https://doi.org/10.1111/j.2042-7158.2011.01383.x

    Article  Google Scholar 

  10. A.E. Al-Snafi, Int. J. Pharm. Tech. Res. 5, 1378–1385 (2013)

    CAS  Google Scholar 

  11. M.K. Patel, A. Mishra, B. Jha, Front. Plant. Sci. (2016). https://doi.org/10.3389/fpls.2016.00431

    Article  PubMed  PubMed Central  Google Scholar 

  12. M.T. Jabbar, A. Yasin, A. Khurshid, Q.H. Rashid, Q. Muhammad, S.N. Nazif, A. Imrana, S.A.I. ElKinza, Bokhari, Am. J. P Sci. (2020). https://doi.org/10.5281/zenodo.3749294

    Article  Google Scholar 

  13. A.B. Samuelsen, J. Ethnopharmacol, (2000). https://doi.org/10.1016/s0378-8741(00)00212-9

  14. P. Talukder, S. Talapatra, N. Ghoshal, S.S. Raychaudhuri, J. Sci. Food Agric. (2015). https://doi.org/10.1002/jsfa.7086

    Article  PubMed  Google Scholar 

  15. Avicenna, Canon of Medicine. (New Delhi: S. Waris Awab, 1998) Lamia Hamdard Printing Press

  16. A. Ameri, G. Heydarirad, J.M. Jafari, A. Ghobadi, H. Rezaeizadeh, R. Choopani, Pharm. Biol. (2015). https://doi.org/10.3109/13880209.2014.928330

    Article  PubMed  Google Scholar 

  17. J. Huang, D. Bowles, E. Esfandiari, G. Dean, N.C. Carpita, G.W. Haughn, Plant. Physiol. (2011). https://doi.org/10.1104/pp.111.172023

    Article  PubMed  PubMed Central  Google Scholar 

  18. C. Voiniciuc, B. Yang, M. Schmidt, M. Günl, B. Usadel, Int. J. Mol. Sci. (2015). https://doi.org/10.3390/ijms16023452

    Article  PubMed  PubMed Central  Google Scholar 

  19. N. Castejon, P. Luna, F.J. Señoráns, J. Agric. Food Chem. (2017). https://doi.org/10.1021/acs.jafc.6b05726

    Article  PubMed  Google Scholar 

  20. X. Zhao, L. Qiao, A.M. Wu, Sci. Rep. (2017). https://doi.org/10.1038/srep40672

    Article  PubMed  PubMed Central  Google Scholar 

  21. B.K. Tiwari, K. Muthukumarappan, C.P. O’Donnell, P.J. Cullen, Int. J. Food Prop. (2010). https://doi.org/10.1080/10942910802317610

    Article  Google Scholar 

  22. K. Vilkhu, R. Mawson, L. Simons, D. Bates, Innov. Food Sci. Emerg. Technol. (2008). https://doi.org/10.1016/j.ifset.2007.04.014

    Article  Google Scholar 

  23. M. Ashokkumar, R. Rink, S. Shestakov, Electron. J. Tech. Acoust. (2011). https://www.ejta.org, 9

  24. A.C. Soria, M. Villamiel, Trends Food Sci. Technol. (2010). https://doi.org/10.1016/j.tifs.2010.04.003

    Article  Google Scholar 

  25. F. Chemat, N. Rombaut, A.G. Sicaire, A. Meullemiestre, A.S. Fabiano-Tixier, Abert-Vian, a review. Ultrason. Sonochem. (2017). https://doi.org/10.1016/j.ultsonch.2016.06.035

    Article  PubMed  Google Scholar 

  26. A. Koocheki, S.A. Mortazavi, F. Shahidi, S.M.A. Razavi, A.R. Taherian, J. Food Eng. (2009). https://doi.org/10.1016/j.jfoodeng.2008.09.028

    Article  Google Scholar 

  27. T. Kaewmanee, L. Bagnasco, S. Benjakul, S. Lanteri, C.F. Morelli, G. Speranza, M.E. Cosulich, Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2013.10.022

    Article  PubMed  Google Scholar 

  28. G.S. Souza, R.C. Bergamasco, A.P. Stafussa, G.S. Madrona, Emir J. Food Agric. (2020). https://doi.org/10.9755/ejfa.2020.v32.i4.2089

    Article  Google Scholar 

  29. R. Myers, D.C. Montgomery, Response Surface Methodology: Product and Process Optimization Using Designed Experiments, 2nd edn. (John Wiley & Sons, New York, 2002), p. 824

    Google Scholar 

  30. C.J. Patel, J. Bhattacharya, A.J. Butte, PloS One. (2010). https://doi.org/10.1002/jps.2600540727

    Article  PubMed  PubMed Central  Google Scholar 

  31. S.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, W.N.L. Dos, Santos, Anal. Chim. Acta. (2007). https://doi.org/10.1016/j.aca.2007.07.011

    Article  PubMed  Google Scholar 

  32. S.K. Ozdemir, J. Zhu, L. He, L. Yang, Phys. Rev. A (2011). https://doi.org/10.1103/PhysRevA.83.033817

    Article  Google Scholar 

  33. E. Alpizar-Reyes, H. Carrillo-Navas, R. Gallardo-Rivera, V. Varela-Guerrero, J. Alvarez-Ramirez, C. Pérez-Alons, J. Food Eng. (2017). https://doi.org/10.1016/j.jfoodeng.2017.04.021

    Article  Google Scholar 

  34. M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, Anal. Chem. (1956). https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  35. P. Prieto, M. Pineda, M. Aguilar, Anal. Biochem. (1999). https://doi.org/10.1006/abio.1999.4019

    Article  PubMed  Google Scholar 

  36. G. Tel, M. Apaydın, M.E. Duru, Food Anal. Methods. (2012). https://doi.org/10.1007/s12161-011-9275-4

    Article  Google Scholar 

  37. S.P. Wong, P.L. Lai, H.W.K. Jen, Food Chem. 99, 775–783 (2006)

    Article  CAS  Google Scholar 

  38. P. Sudha, S.S. Zinjarde, S.Y. Bhargava, A.R. Kumar, BMC Complement. Altern. Med. (2011). https://doi.org/10.1186/1472-6882-11-5

    Article  Google Scholar 

  39. T.L. Western, D.J. Skinner, G.W. Haughn, Plant Physiol. (2000). https://doi.org/10.1104/pp.122.2.345

  40. M.I. Capitani, V.Y. Ixtaina, S.M. Nolasco, M.C. Tomás, J. Sci. Food Agric. (2013). https://doi.org/10.1002/jsfa.6327

    Article  PubMed  Google Scholar 

  41. S.C. Orifici, M.I. Capitani, M.C. Tomás, S.M. Nolasco, J. Sci. Food Agric. (2018). https://doi.org/10.1002/jsfa.8974

    Article  PubMed  Google Scholar 

  42. M.H.F. Felisberto, A.L. Wahanik, C.R. Gomes-Ruffi, M.T.P.S. Clerici, Y.K. Chang, C.J. Steel, LWT-Food Sci. Technol. (2015). https://doi.org/10.1016/j.lwt.2015.03.114

    Article  Google Scholar 

  43. D.L. Woods, R.K. Downey, Mucilage from yellow mustard. Can. J. Plant. Sci. 60, 10311033 (1980). https://doi.org/10.4141/cjps80-146

    Article  Google Scholar 

  44. W. Cui, M.N.A. Eskin, C.G. Biliaderis, Food Chem. (1993). https://doi.org/10.1016/0308-8146(93)90032-B

    Article  Google Scholar 

  45. J. Zubr, Nutr. Food Sci. (2010). https://doi.org/10.1108/00346651011077036

    Article  Google Scholar 

  46. J.M. Cowley, L. Herliana, K.A. Neumann, Plant Methods. (2020). https://doi.org/10.1186/s13007-020-00569-6

  47. C. Soukoulis, C. Gaiani, L. Hoffmann, Curr. Opin. Food Sci. (2018). https://doi.org/10.1016/j.cofs.2018.01.004

    Article  Google Scholar 

  48. F.J. Sánchez, M.A. Manzanares, E.F. De andres, J.L. Tenorio, L. Ayerbe, Field Crops Res. (1998). https://doi.org/10.1016/S0378-4290(98)00125-7

    Article  Google Scholar 

  49. E. Bukhsh, S.A. Malik, S.S. Pak. J. Bot. 39, 1181 (2007)

    Google Scholar 

  50. Z.F. Ahmed, A.M. Rizk, F.M. Hammouda, J. Pharm. Sci. (1965). https://doi.org/10.1002/jps.2600540727

    Article  PubMed  Google Scholar 

  51. E. Souri, G. Amin, H. Farsam, M.T. Barazandeh, DARU. 16, 83–87 (2008)

    Google Scholar 

  52. N. Beara, M.M. Lesjak, E.D. Jovin, K.J. Balog, G.T. Anaˇckov, D.Z. Orˇci´c, N.M. Mimica-Duki´c, J. Agricult Food Chem. (2009). https://doi.org/10.1021/jf902205m

    Article  Google Scholar 

  53. Al-Achi, Women’s Health in Primary Care. 8(7), 325 (2005)

    Google Scholar 

  54. S. Foster, Acta Hort,. (1993). https://doi.org/10.17660/ActaHortic.1993.330.6

  55. A.S.J. Garcia, M.J. Verde-Star, N.L. Heredia, J. Herbs Spices Med. Plants. (2001). https://doi.org/10.1300/J044v08n02_02

    Article  Google Scholar 

  56. J.K. Grover, S. Yadav, V. Vats, J. Ethnopharmacol. (2002). https://doi.org/10.1016/s0378-8741(02)00059-4

    Article  PubMed  Google Scholar 

  57. S.R. Mentreddy, J. Sci, Food Agric. (2007). https://doi.org/10.1002/jsfa.2811

  58. R. Sultana, A.M. Alashi, K. Islam, M. Saifullah, C.E. Haque, R.E. Aluko, Foods, (2020). https://doi.org/10.3390/foods9070844

  59. B.A. Kumar, K. Lakshman, R. Nandeesh, P.A. Kumar, B. Manoj, V. Kumar, D.S. Shekar, Saudi J. boil sci. (2011). https://doi.org/10.1016/j.sjbs.2010.08.002

    Article  Google Scholar 

  60. S.B. Shah, L. Sartaj, F. Ali, MOJ. Bioequiv. Availab. (2018). https://doi.org/10.15406/mojbb.2018.05.00113

    Article  Google Scholar 

  61. I. Funke, M. Melzig, Rev. bras. Pharmacogn. (2006). https://doi.org/10.1590/S0102-695X2006000100002

    Article  Google Scholar 

  62. M. Sangeethapriya, P. Siddhuraju, Food Sci. Hum. Wellness. (2014). https://doi.org/10.1016/j.fshw.2014.05.003

    Article  Google Scholar 

  63. C.I. Chukwuma, M.S. Islam, E.O. Amonsou, J. Food Biochem. (2018). https://doi.org/10.1111/jfbc.12601

    Article  PubMed  Google Scholar 

  64. F. Nazir, Q. Fariduddin, A. Hussain, T.A. Khan, Ecotoxicol. Environ. Saf. (2021). https://doi.org/10.1016/j.ecoenv.2020.111081

    Article  PubMed  Google Scholar 

  65. J.L. Hartwell, Plants used against cancer: A Survey (Quarterman Publications, Lawrence, 1982)

    Google Scholar 

  66. M. Juarranz, M.E. Calle-Puron, A. Gonzalez-Navarro, E. Regidor-Poyatos, T. Soriano, D. Martinez-Hernandez, V.D. Rojas, V.F. Guinee, Eur. J. Cancer Prev. (2002). https://doi.org/10.1097/00008469-200210000-00009

    Article  PubMed  Google Scholar 

  67. M. Sierra, J. Garcia, N. Fernández, Eur. J. Clin. Nutr. (2001). https://doi.org/10.1038/sj.ejcn.1601147

    Article  PubMed  Google Scholar 

  68. B. Singh, N. Chauhan, S. Kumar, Carbohydr. Polym. (2008). https://doi.org/10.1016/j.carbpol.2007.12.009

    Article  PubMed  Google Scholar 

  69. M.K. Patel, B. Tanna, A. Mishra, B. Jha, Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2018.06.139

    Article  PubMed  Google Scholar 

  70. A. Wahid, S.M.N. Mahmoud, E.Z. Attia, A.E.S.A. Yousef, A.M.M. Okasha, H.A. Soliman, S Afr. J. Bot. (2020). https://doi.org/10.1016/j.sajb.2020.01.007

    Article  Google Scholar 

  71. M.K. Patel, B. Tanna, H. Gupta, A. Mishra, B. Jha, Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.062

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hassen Gouja, Abdelkarim Ben Arfa, H?dia Hannachi, Hajer Tlili, Hanen Najjaa and Mohamed Neffati. The first draft of the manuscript was written by Hassen Gouja and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hanen Najjaa.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouja, H., Arfa, A.B., Hajer, T. et al. Optimization of the rapid effective extraction, antioxidant, antiproliferative and alpha-amylase activities in Plantago ovata seed non-adherent and adherent mucilage by RSM. Food Measure 18, 2450–2460 (2024). https://doi.org/10.1007/s11694-024-02363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02363-7

Keywords

Navigation