Log in

Characterization of polyphenols profile, antioxidant, and in vitro activities of Nigella sativa L. (black cumin) seed oleoresin

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The medicinal importance of Nigella sativa L. (black seeds) is portrayed by their traditional use against various ailments. The oleoresins obtained from spices are generally semi-solid concentrated whole extracts containing essential oil. This study deals with the extraction of oleoresins from black seeds by solvent extraction method using ethanol 70% (v/v), methanol & acetonitrile, and its characterization. Total polyphenols and flavonoids were estimated while DPPH and Fe2+ ion chelation assay was done to assess the antioxidant activity. Solvent extraction by 70% ethanol, methanol, and acetonitrile yielded 36.8, 34.9, and 22.1% oleoresin, respectively. High polyphenol and moderate flavonoid content were found in all three samples. 70% ethanolic oleoresin showed the highest polyphenol content 67.05 ± 1.48 µg GAE/mg and better antioxidant activity with the lowest IC50 of 0.86 ± 0.22 mg/ml for DPPH radical scavenging. The oleoresin was further characterized by HPLC and GC–MS techniques detecting the presence of various volatile compounds, thymoquinone showed well-resolved peaks with the highest percent area in the chromatograms. GC–MS chromatograms also showed that 40–45% of oleoresin consisted of essential fatty acids. In vitro enzyme inhibition assays against three digestive enzymes, pancreatic lipase (PL), α-amylase, and α-glucosidase were also done to check the anti-obese activity of the oleoresins. Results showed 50–60% inhibition of PL and α-amylase, while 20–30% inhibition of α-glucosidase activity. The study suggested that the oleoresins obtained from the spice N. sativa have nutraceutical properties and can be used as therapeutics for the prevention or treatment of various lifestyle disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available in the form of laboratory records and is accessible from the corresponding author upon reasonable request. The data are not publicly available due to privacy restrictions or ethical issues.

References

  1. S.J. Gerige, M.K.Y. Gerige, M. Rao, GC-MS analysis of Nigella sativa seeds and antimicrobial activity of its volatile oil. Brazilian Arch. Biol. Technol. 52(5), 1189–1192 (2009). https://doi.org/10.1590/S1516-89132009000500016

    Article  CAS  Google Scholar 

  2. M. Burits, F. Bucar, Antioxidant activity of Nigella sativa essential oil. Phyther. Res. 14(5), 323–328 (2000). https://doi.org/10.1002/1099-1573(200008)14:5%3c323::AID-PTR621%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  3. N. Solmaz Mohammed, Ö. Hilal, B. Nurşen, Pharmacological and toxicological properties of Eugenol. Turkish J. Pharm. Sci. 14(2), 201–206 (2017)

    Article  Google Scholar 

  4. J. Dong et al., Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. Int. J. Biol. Macromol. 159, 725–738 (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.042

    Article  CAS  PubMed  Google Scholar 

  5. A. Mahmoudi, K. Ghatreh Samani, E. Farrokhi, E. Heidarian, Effects of Nigella sativa extracts on the lipid profile and uncoupling protein-1 gene expression in brown adipose tissue of mice. Adv. Biomed. Res. 7(1), 121 (2018). https://doi.org/10.4103/abr.abr_91_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. G. Singh, P. Marimuthu, C.S. De Heluani, C. Catalan, Chemical constituents and antimicrobial and antioxidant potentials of essential oil and acetone extract of Nigella sativa seeds. J. Sci. Food Agric. 85(13), 2297–2306 (2005). https://doi.org/10.1002/jsfa.2255

    Article  CAS  Google Scholar 

  7. S. Singh, S.S. Das, G. Singh, C. Schuff, M.P. De Lampasona, C.A.N. Catalán, Composition, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.). Int. Biomed. Res. (2014). https://doi.org/10.1155/2014/918209

    Article  Google Scholar 

  8. K. Rajashri, S. Mudhol, M. Serva Peddha, B.B. Borse, Neuroprotective effect of spice oleoresins on memory and cognitive impairment associated with scopolamine-induced Alzheimer’s disease in rats. ACS Omega 5(48), 30898–30905 (2020). https://doi.org/10.1021/acsomega.0c03689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. P. Janhavi, S. Sindhoora, S.P. Muthukumar, Bioaccessibility and bioavailability of polyphenols from sour mangosteen (Garcinia xanthochymus) fruit. J. Food Meas. Charact. 14(5), 2414–2423 (2020). https://doi.org/10.1007/s11694-020-00488-z

    Article  Google Scholar 

  10. J.S. Bland, Oxidants and antioxidants in clinical medicine: past, present and future potential. J. Nutr. Environ. Med. 5(3), 255 (1995)

    Article  CAS  Google Scholar 

  11. R. Aeschbach et al., Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 32(1), 31–36 (1994). https://doi.org/10.1016/0278-6915(84)90033-4

    Article  CAS  PubMed  Google Scholar 

  12. G.M. Hadad, R.A.A. Salam, R.M. Soliman, M.K. Mesbah, High-Performance liquid chromatography quantification of principal antioxidants in black seed (Nigella sativa L.) phytopharmaceuticals. J. AOAC Int. 95(4), 1043–1047 (2012). https://doi.org/10.5740/jaoacint.11-207

    Article  CAS  PubMed  Google Scholar 

  13. P.J. Houghton, R. Zarka, B. De Las Heras, J.R.S. Hoult, Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta Med. 61(1), 33–36 (1995). https://doi.org/10.1055/s-2006-957994

    Article  CAS  PubMed  Google Scholar 

  14. F. Isik et al., Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats. Dig. Dis. Sci. 56(3), 721–730 (2011). https://doi.org/10.1007/s10620-010-1333-z

    Article  CAS  PubMed  Google Scholar 

  15. A. Dechakhamphu, N. Wongchum, Screening for anti-pancreatic lipase properties of 28 traditional Thai medicinal herbs. Asian Pac. J. Trop. Biomed. 5(12), 1042–1045 (2015). https://doi.org/10.1016/j.apjtb.2015.09.012

    Article  Google Scholar 

  16. T. Khabeershamsiya, J.R. Manjunatha, H.K. Manonmani, Lipase inhibitors from Nigella sativa and Punica granatum as an effective approach towards controlling obesity. LIFE Int. J. Heal. Life-Sci. 2(2), 01–19 (2016). https://doi.org/10.20319/lijhls.2016.22.0119

    Article  Google Scholar 

  17. U. Etxeberria, A. Laura, D. Garza, J. Campio, Antidiabetic effects of natural. Expert Opin 16(3), 269–297 (2012)

    CAS  Google Scholar 

  18. Y.T. Wondmkun, Obesity, insulin resistance, and type 2 diabetes: associations and therapeutic implications. Diabetes Metab. Syndr. Obes. 13, 3611–3616 (2020). https://doi.org/10.2147/DMSO.S275898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R. Aquino, S. Morelli, M.R. Lauro, S. Abdo, A. Saija, A. Tomaino, Phenolic constituents and antioxidant activity of an extract of Anthurium versicolor leaves. J. Nat. Prod. 64(8), 1019–1023 (2001). https://doi.org/10.1021/np0101245

    Article  CAS  PubMed  Google Scholar 

  20. G.L. Chen et al., Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods 17, 243–259 (2015). https://doi.org/10.1016/j.jff.2015.05.028

    Article  CAS  Google Scholar 

  21. L. Manzocco, M. Anese, M.C. Nicoli, Antioxidant properties of tea extracts as affected by processing. Lwt 31(7–8), 694–698 (1998). https://doi.org/10.1006/fstl.1998.0491

    Article  CAS  Google Scholar 

  22. M.A. Ebrahimzadeh, F. Pourmorad, A.R. Bekhradnia, Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. African J. Biotechnol. 7(18), 3188–3192 (2008)

    CAS  Google Scholar 

  23. O.A. Ghosheh, A.A. Houdi, P.A. Crooks, High performance liquid chromatographic analysis of the pharmacologically active quinones and related compounds in the oil of the black seed (Nigella sativa L.). J. Pharm. Biomed. Anal. 19(5), 757–762 (1999). https://doi.org/10.1016/S0731-7085(98)00300-8

    Article  CAS  PubMed  Google Scholar 

  24. S. Priya, M.S. Peddha, Physicochemical characterization, polyphenols and flavonoids of different extracts from leaves of four varieties of tulsi (Ocimum sp.). South African J. Bot. 159, 381–395 (2023). https://doi.org/10.1016/j.sajb.2023.06.025

    Article  CAS  Google Scholar 

  25. R.A. El-shiekh, D.A. Al-Mahdy, M.S. Hifnawy, E.A. Abdel-Sattar, In-vitro screening of selected traditional medicinal plants for their anti-obesity and anti-oxidant activities. South African J. Bot. 123, 43–50 (2019). https://doi.org/10.1016/j.sajb.2019.01.022

    Article  CAS  Google Scholar 

  26. J.O. Unuofin, G.A. Otunola, A.J. Afolayan, In vitro α-amylase, α-glucosidase, lipase inhibitory and cytotoxic activities of tuber extracts of Kedrostis africana (L.) Cogn. Heliyon (2018). https://doi.org/10.1016/j.heliyon.2018.e00810

    Article  PubMed  PubMed Central  Google Scholar 

  27. Q. You, F. Chen, X. Wang, P.G. Luo, Y. Jiang, Inhibitory effects of muscadine anthocyanins on α-glucosidase and pancreatic lipase activities. J. Agric. Food Chem. 59(17), 9506–9511 (2011). https://doi.org/10.1021/jf201452v

    Article  CAS  PubMed  Google Scholar 

  28. P. Balyan, A. Ali, Comparative analysis of the biological activities of different extracts of Nigella sativa L. seeds. Ann. Phytomedicine An Int. J (2022). https://doi.org/10.54085/ap.2022.11.1.67

    Article  Google Scholar 

  29. B. Matthaus, M.M. Özcan, Fatty acids, tocopherol, and sterol contents of some Nigella species seed oil. Czech J. Food Sci. 29(2), 145–150 (2011). https://doi.org/10.17221/206/2008-cjfs

    Article  CAS  Google Scholar 

  30. A.A. Mariod, R.M. Ibrahim, M. Ismail, N. Ismail, Antioxidant activity and phenolic content of phenolic rich fractions obtained from black cumin (Nigella sativa) seedcake. Food Chem. 116(1), 306–312 (2009). https://doi.org/10.1016/j.foodchem.2009.02.051

    Article  CAS  Google Scholar 

  31. M.P. Swetha, C. Radha, S.P. Muthukumar, Bioaccessibility and bioavailability of Moringa oleifera seed flour polyphenols. J. Food Meas. Charact. 12(3), 1917–1926 (2018). https://doi.org/10.1007/s11694-018-9806-4

    Article  Google Scholar 

  32. A. Goga, S. Hasić, Š Bećirović, S. Ćavar, Bulletin of the chemists and technologists of Bosnia and Herzegovina phenolic compounds and antioxidant activity of extracts of Nigella sativa L. Bull. Chem. Technol. Bosnia Herzegovina 39, 15–20 (2012)

    CAS  Google Scholar 

  33. M. Dalli, S.E. Azizi, F. Kandsi, N. Gseyra, Evaluation of the in vitro antioxidant activity of different extracts of Nigella sativa L. seeds, and the quantification of their bioactive compounds. Mater. Today Proc. 45, 7259–7263 (2021). https://doi.org/10.1016/j.matpr.2020.12.743

    Article  CAS  Google Scholar 

  34. A. Meziti, H. Meziti, K. Boudiaf, B. Mustapha, Polyphenolic profile and antioxidant activities of Nigella sativa seed extracts in vitro and in vivo. World Acad. Sci. 6(4), 26–32 (2012)

    Google Scholar 

  35. D. Malenčić, Z. Maksimović, M. Popović, J. Miladinović, Polyphenol contents and antioxidant activity of soybean seed extracts. Bioresour. Technol. 99(14), 6688–6691 (2008). https://doi.org/10.1016/j.biortech.2007.11.040

    Article  CAS  PubMed  Google Scholar 

  36. H. Zhao et al., Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem. 107(1), 296–304 (2008). https://doi.org/10.1016/j.foodchem.2007.08.018

    Article  CAS  Google Scholar 

  37. H. Kausar, L. Abidin, M. Mujeeb, Comparative assessment of extraction methods and quantitative estimation of thymoquinone in the seeds of Nigella sativa L. By HPLC. Int. J. Pharmacogn. Phytochem. Res. 9(12), 1425–1428 (2018). https://doi.org/10.25258/phyto.v9i12.11186

    Article  Google Scholar 

  38. Ü. Erdoğan, M. Yilmazer, S. Erbaş, Hydrodistillation of Nigella sativa seed and analysis of thymoquinone with HPLC and GC-MS. Bilge Int. J. Sci. Technol. Res (2020). https://doi.org/10.30516/bilgesci.688845

    Article  Google Scholar 

  39. H.R.H. Takruri, M.A.F. Dameh, Study of the nutritional value of black cumin seeds (Nigella sativa L.). J. Sci. Food Agric. 76(3), 404–410 (1998). https://doi.org/10.1002/(SICI)1097-0010(199803)76:3%3c404::AID-JSFA964%3e3.0.CO;2-L

    Article  CAS  Google Scholar 

  40. A.E. Edris, P. Wawrzyniak, D. Kalemba, Subcritical CO2 extraction of a volatile oil-rich fraction from the seeds of Nigella sativa for potential pharmaceutical and nutraceutical applications. J. Essent. Oil Res. 30(2), 84–91 (2018). https://doi.org/10.1080/10412905.2017.1391721

    Article  CAS  Google Scholar 

  41. M. Marrelli, M.R. Loizzo, M. Nicoletti, F. Menichini, F. Conforti, In vitro investigation of the potential health benefits of wild Mediterranean dietary plants as anti-obesity agents with α-amylase and pancreatic lipase inhibitory activities. J. Sci. Food Agric. 94(11), 2217–2224 (2014). https://doi.org/10.1002/jsfa.6544

    Article  CAS  PubMed  Google Scholar 

  42. S. Rohn, H.M. Rawel, J. Kroll, Inhibitory effects of plant phenols on the activity of selected enzymes. J. Agric. Food Chem. 50(12), 3566–3571 (2002). https://doi.org/10.1021/jf011714b

    Article  CAS  PubMed  Google Scholar 

  43. C. Proença et al., α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure–activity relationship study. J. Enzyme Inhib. Med. Chem. 32(1), 1216–1228 (2017). https://doi.org/10.1080/14756366.2017.1368503

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  44. B.W. Zhang et al., Dietary flavonoids and acarbose synergistically inhibit α-glucosidase and lower postprandial blood glucose. J. Agric. Food Chem. 65(38), 8319–8330 (2017). https://doi.org/10.1021/acs.jafc.7b02531

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author thanks the University Grants Commission (UGC), India for awarding junior research fellowship (JRF) (NTA Ref. No.: 211610048123. Dt. 19-04-2022). The authors are thankful to the director, CSIR-CFTRI and HOD, Department of Biochemistry, CSIR-CFTRI, Mysuru for providing the infrastructure and instrumentation facility for carrying out the research work. We are also grateful to Dr B.B. Borse for his guidance and valuable inputs.

Funding

No specific grants from funding agencies in the public, commercial or non-profit sectors was received for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study design. Establishing of methodology, experiments, writing original draft and editing was done by Isha Gupta. Conceptualization, resources, supervision was provided by Muthukumar S.P. along with reviewing the final draft of manuscript.

Corresponding author

Correspondence to Muthukumar Serva Peddha.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, I., Serva Peddha, M. Characterization of polyphenols profile, antioxidant, and in vitro activities of Nigella sativa L. (black cumin) seed oleoresin. Food Measure 18, 2205–2215 (2024). https://doi.org/10.1007/s11694-023-02311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02311-x

Keywords

Navigation